Abs Copolymer Patents (Class 205/928)
  • Patent number: 6824889
    Abstract: This invention relates to polyolefin alloys that are receptive to metal plating. These compositions also have enhanced properties and are easily processed into articles by various molding methods. The blends of the invention preferably include a polyethylene component, acrylonitrile-butadiene-styrene polymer(s), and at least one styrene monoolefin copolymer. The invention also relates to articles containing such alloys, and to methods of forming such blends and articles containing the same. These blends have excellent platability and superior physical properties including enhanced stiffness and toughness.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: November 30, 2004
    Assignee: Solvay Engineered Polymers, Inc.
    Inventors: Scott Matteucci, Satchit Srinivasan, Ruidong Ding
  • Patent number: 6509107
    Abstract: This invention relates to polyolefin alloys that are receptive to metal plating. These compositions also have enhanced properties and are easily processed into articles by various molding methods. The blends of the invention preferably include polyolefin homopolymers or copolymers, acrylonitrile-butadiene-styrene polymers, and a blend of at least one styrene monoolefin copolymer and at least one styrene diolefin copolymer. These blends have excellent platability and superior physical properties including enhanced rigidity, toughness, and dimensional stability.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: January 21, 2003
    Assignee: Solvay Engineered Polymers
    Inventors: Ruidong Ding, Satchit Srinivasan, Scott Matteucci
  • Patent number: 6413652
    Abstract: This invention relates to polyolefin alloys that are receptive to metal plating. These compositions also have enhanced properties and are easily processed into articles by various molding methods. The blends of the invention preferably include polyolefin homopolymers or copolymers, acrylonitrile-butadiene-styrene polymers, and styrenic block copolymers. These blends have excellent platability and superior physical properties including enhanced rigidity, thoughness, and dimensional stability.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: July 2, 2002
    Assignee: Solvay Engineered Polymers
    Inventors: Ruidong Ding, Satchit Srinivasan, Scott Matteucci
  • Patent number: 6114051
    Abstract: A method for plating a high impact resistant plastic, particularly a polycarbonate substrate which has been modified with up to about 50 percent by weight of acrylonitrile-butadiene-styrene. The surface of the plastic is first conditioned with a halogenated organic solvent conditioner, preferably 1-3-dichloro-2-propanol, prior to the electrochemical deposition of the desired metal layer.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: September 5, 2000
    Assignee: Lacks Industries, Inc.
    Inventors: Roger James Timmer, Lee Alan Chase
  • Patent number: 5846665
    Abstract: A method for plating a high impact resistant plastic, particularly a polycarbonate substrate which has been modified with up to about 50 percent by weight of acrylonitrile-butadiene-styrene. The surface of the plastic is first conditioned with a halogenated organic solvent conditioner, preferably 1-3-dichloro-2-propanol, prior to electroless plating and the electrochemical deposition of the desired metal layer.
    Type: Grant
    Filed: April 5, 1995
    Date of Patent: December 8, 1998
    Assignee: Lacks Industries, Inc.
    Inventors: Roger James Timmer, Lee Alan Chase
  • Patent number: 5609795
    Abstract: The present invention presents a solid polymer electrolyte consisting of a multiphase polymer matrix and an electrolyte solution. The polymer matrix consists of a highly polar polymeric (HPP) phase impregnated with the electrolyte solution to form ion conducting channels, and a less polar polymeric (LPP) phase, constituting the support structure. Further, the invented solid polymer electrolyte may also include a second ion conducting channels, forming a multiphase microstructure in which the electrolyte solution is present around the LPP particles as a fine mesh-like network. The invention also presents two kinds of method for making such a solid polymer electrolyte. The first includes the steps of: making a multiphase polymer matrix; and impregnating the polymer matrix with an electrolyte solution.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 11, 1997
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Morihiko Matsumoto, Toshihiro Ichino, Shiro Nishi
  • Patent number: 5585039
    Abstract: The present invention presents a solid polymer electrolyte consisting of a multiphase polymer matrix and an electrolyte solution. The polymer matrix consists of a highly polar polymeric (HPP) phase impregnated with the electrolyte solution to form ion conducting channels, and a less polar polymeric (LPP) phase, constituting the support structure. Further, the invented solid polymer electrolyte may also include a second ion conducting channels, forming a multiphase microstructure in which the electrolyte solution is present around the LPP particles as a fine mesh-like network. The invention also presents two kinds of method for making such a solid polymer electrolyte. The first includes the steps of: making a multiphase polymer matrix; and impregnating the polymer matrix with an electrolyte solution.
    Type: Grant
    Filed: December 11, 1995
    Date of Patent: December 17, 1996
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Morihiko Matsumoto, Toshihiro Ichino, Shiro Nishi
  • Patent number: 5316867
    Abstract: Addition polymer substrates comprising structural groups derived from olefinic nitriles and conjugated dienes, especially ABS resin substrates, are treated with aqueous tetravalent cerium in a concentration of at least about 0.1 M, preferably with a tetravalent cerium solution, to improve adhesion to metal coatings subsequently deposited non-electrolytically; for example, by electroless deposition. The metallized articles are heat treated following metal deposition. Further metal coatings may be deposited, preferably followed by further heat treatment.
    Type: Grant
    Filed: May 17, 1993
    Date of Patent: May 31, 1994
    Assignee: General Electric Company
    Inventors: Herbert S. Chao, Carol L. Fasoldt
  • Patent number: 5160600
    Abstract: The process of electroless plating of polymers containing units derived from at least one member of the group consisting of acrylonitrile, butadiene and styrene, is carried out in an environment free of chromium ions, by the sequential steps of roughening and activating the surface of the polymer by contacting the same with an aqueous solution of a concentrated sulfur acid, of concentrated nitric acid or of concentrated phosphoric acid, in the presence of noble metal ion and an oxidant selected from the group consisting of nitric acid, hydrogen peroxide and persulfates. This is followed by an aqueous suspension of Pd.sup.0 and then by the conventional chemical metallization.
    Type: Grant
    Filed: March 5, 1990
    Date of Patent: November 3, 1992
    Inventors: Gordhanbai N. Patel, Durgadas Bolikal, Hemant H. Patel