Including Use Of Gas Flow Distributor In Column Patents (Class 95/85)
  • Publication number: 20110048230
    Abstract: A process for reducing ammonia from digested wastes (9), in which the stripping of ammonia by counter-current air/liquid extraction inside a stripping column (1) and the subsequent recover of ammonia by counter-current contact of the gas phase (11) exiting said stripping column (1) with a first sulphuric acid solution (10) inside a first absorption column (2) are provided.
    Type: Application
    Filed: August 28, 2009
    Publication date: March 3, 2011
    Inventors: Marco BALDI, Diego Binaghi
  • Patent number: 7897917
    Abstract: Embodiments of the present invention are directed to devices and methods for receiving NSC Fluids having at least one analyte from a chromatograph and directing analyte ions into the vacuum regions of a mass spectrometer. The device has a housing having at least one wall defining a chamber, sample inlet, an ionization media inlet and an outlet. The sample inlet has a position in communication with a chromatograph receiving a NSC Fluid. The sample inlet receives the NSC Fluid and directs the NSC Fluid into the chamber to form a sample jet of NSC Fluid. The ionization media inlet is placed in fluid communication with a source of ionization media and directs the ionization media into the chamber and the sample jet to create analyte ions. The analyte ions are received in the mass spectrometer vacuum region orifice.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 1, 2011
    Assignee: Waters Technologies Corporation
    Inventor: Joseph A. Jarrell
  • Publication number: 20110023581
    Abstract: Embodiments of a front-end pre-concentrator module, a back-end pre-concentrator module and a gas analysis subsystem are disclosed, as well as gas analysis systems using combinations of the front-end pre-concentrator module, the back-end pre-concentrator module and the gas analysis subsystem. Embodiments of disposable and re-usable moisture removal filters are disclosed for use alone or in combination with a gas analysis system.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 3, 2011
    Applicant: TRICORNTECH CORPORATION
    Inventors: Tsung-Kuan A. Chou, Li-Peng Wang, Chia-Jung Lu, Shih-Chi Chu
  • Publication number: 20100154511
    Abstract: A method and apparatus for two-dimensional gas chromatography (GC), including a valve having first and second positions (P1, and P2), and first through fourth sample flow paths (FP1-FP4). In P1, a first gas sample is collected from a first dimension GC column via FP1, a first pressure source and a first, second dimension GC column are connected via FP2, a second pressure source and a second, second dimension GC column are connected via FP3, and FP4 is disconnected. In P2, the first sample in FP1 is introduced to the second, second dimension GC column via FP1, with aid of the second pressure source, a second gas sample is collected from the first dimension GC column via FP2, the first pressure source and the first, second dimension GC column via FP4 are connected, and FP3 is disconnected.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 24, 2010
    Inventors: Gordon Lambertus, William Steinecker
  • Patent number: 7260978
    Abstract: A gas chromatography/mass spectrometry system includes two sample introduction parts, a gas chromatography part having two columns, a column oven for housing the two columns in a parallel configuration, an interface part through which an outlet end of each of the two columns is inserted, and a mass spectrometry part. The mass spectrometry part has an ionization chamber to which the outlet ends of the columns inserted through the interface part are connected, a mass separation part, an ion detector, and a vacuum chamber for housing the ionization chamber, the mass separation part, and the detector. Because the outlet ends of the parallel columns are both connected to the ionization chamber, the carrier gas flow and line velocity are the same as though there is one column, thereby avoiding line stagnation. Since analyses can be performed selectively with a single system, results having high reliability and precision can be obtained.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: August 28, 2007
    Assignee: Shimadzu Corporation
    Inventor: Haruhiko Miyagawa
  • Patent number: 5892458
    Abstract: An apparatus for the recognition of exchangeable parts in an analytical measuring instrument or in an analytical measurement system with several analytical devices, which contain exchangeable parts has identification modules each attached to an exchangeable part, and transmit-receive devices which can receive information signals from an identification module and send information signals to an identification module, and a control device which evaluates the information from an identification module. The control device can cause a message to be displayed on a display device, if the information read out from an identification module does not fulfill certain conditions, for example with regard to the quality of the corresponding part.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: April 6, 1999
    Assignee: Hewlett-Packard Company
    Inventors: Herbert Anderer, Christian Buettner, Bernd Walter Hoffmann, Claus Lueth
  • Patent number: 5547497
    Abstract: A gas chromatograph system including a cold trap having two portions, a capillary tube and a porous layer open tubular (PLOT) column, for substantially simultaneously trapping lower and higher boiling point gasses. The capillary tube enables cold trapping of lower boiling point gasses while the PLOT column enables cold trapping of higher boiling point gasses. The capillary tube interconnects at one end to an analytical column and a sample gas source and interconnects at its other end to a first end of the PLOT column. The other end of the PLOT column interconnects to a carrier gas source and a vacuum source. The capillary tube and PLOT column are both positioned within a temperature controlled environment of the cold trap. During the collection mode, the temperature control device maintains a relatively low temperature to condense the sample components.
    Type: Grant
    Filed: December 28, 1993
    Date of Patent: August 20, 1996
    Assignee: Chromatofast, Inc.
    Inventors: Mark A. Klemp, Anita J. Peters