Patents by Inventor Henry J. Frisch

Henry J. Frisch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11881391
    Abstract: Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: January 23, 2024
    Assignees: Radiation Monitoring Devices, Inc., University of Chicago, Brookhaven Science Associates, LLP
    Inventors: Harish B. Bhandari, Vivek V. Nagarkar, Olena E. Ovechkina, Henry J. Frisch, Klaus Attenkofer, John M. Smedley
  • Publication number: 20230400595
    Abstract: Gamma-ray detectors for the detection of one or more gamma-rays are provided. Also provided are methods of using the detectors for the detection of one or more gamma-rays. The detectors can be used in high-spatial resolution PET systems, including time-of-flight (TOF)-PET systems. Some of the gamma-ray detectors utilize fluors and an optical imaging system to determine the time and location of a first scattering event of a gamma-ray in a low atomic number scintillating medium. Some of the gamma-ray detectors determine the time and location of a first scattering event of a gamma-ray in a low-density scintillating medium by imaging scintillation photons from the scattering event as a time-series of photon “rings” using a planar pixilated photodetector as a scintillation photon counter.
    Type: Application
    Filed: October 26, 2021
    Publication date: December 14, 2023
    Inventors: Henry J. Frisch, Evan Angelico, Patrick J. La Riviere, Bernhard W. Adams, Eric Spieglan, Joao F. Shida, Andrey Elagin, Kepler Domurat-Sousa, Allison H. Squires
  • Patent number: 11715616
    Abstract: Systems and methods for the batch production of large numbers of highly uniform multichannel-plate photomultiplier tubes (MCP-PMTs) for large-scale applications are provided. The systems and methods employ dual, nested low-vacuum (LV) and UHV processing in a rapid-cycling, small-footprint, scalable, batch-production facility that is capable of fabricating many MCP-PMTs simultaneously.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: August 1, 2023
    Assignee: THE UNIVERSITY OF CHICAGO
    Inventors: Henry J. Frisch, Evan Angelico, Andrey Elagin, Eric Spieglan, Bernhard W. Adams
  • Patent number: 11194059
    Abstract: Hermetically sealed electronic devices and methods for fabricating the hermetically sealed electronic devices are provided. The devices include a solder sealed vacuum housing. The solder seal is formed using a solder wick having an external solder reservoir. When the reservoir is filled with molten solder, the solder is drawn via capillary action into a precisely defined narrow gap between two components of the housing where it forms an airtight and vacuum-tight seal.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: December 7, 2021
    Assignee: The University of Chicago
    Inventors: Henry J. Frisch, Evan Angelico, Andrey Elagin, Eric Spieglan
  • Patent number: 11094495
    Abstract: Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: August 17, 2021
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Harish B. Bhandari, Vivek V. Nagarkar, Olena E. Ovechkina, Henry J. Frisch, Klaus Attenkofer, John M. Smedley
  • Publication number: 20210134552
    Abstract: Systems and methods for the batch production of large numbers of highly uniform multichannel-plate photomultiplier tubes (MCP-PMTs) for large-scale applications are provided. The systems and methods employ dual, nested low-vacuum (LV) and UHV processing in a rapid-cycling, small-footprint, scalable, batch-production facility that is capable of fabricating many MCP-PMTs simultaneously.
    Type: Application
    Filed: October 28, 2020
    Publication date: May 6, 2021
    Inventors: Henry J. Frisch, Evan Angelico, Andrey Elagin, Eric Spieglan, Bernhard W. Adams
  • Publication number: 20200326433
    Abstract: Hermetically sealed electronic devices and methods for fabricating the hermetically sealed electronic devices are provided. The devices include a solder sealed vacuum housing. The solder seal is formed using a solder wick having an external solder reservoir. When the reservoir is filled with molten solder, the solder is drawn via capillary action into a precisely defined narrow gap between two components of the housing where it forms an airtight and vacuum-tight seal.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 15, 2020
    Inventors: Henry J. Frisch, Evan Angelico, Andrey Elagin, Eric Spieglan
  • Patent number: 10132942
    Abstract: TOF-PET detector systems, and methods for imaging photon-emitting samples using the detector systems, are provided. The TOF-PET detector systems use large-area photodetectors with extremely high time-resolution and an approach to data collection and analysis that allows for the use of inexpensive low-density scintillator materials. The TOF-PET detector systems are characterized by their ability to identify, on a statistical basis, the transverse and depth location of the first of the series of energy deposition events that are generated when a gamma photon enters the low-density scintillator material.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: November 20, 2018
    Assignees: The University of Chicago, Brookhaven Science Associates, LLC
    Inventors: Henry J. Frisch, Eric J. Oberla, Hee-Jong Kim, Minfang Yeh
  • Patent number: 9916958
    Abstract: Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 13, 2018
    Assignees: RADIATION MONITORING DEVICES, INC., THE UNIVERSITY OF CHICAGO, BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Harish B. Bhandari, Vivek V. Nagarkar, Olena E. Ovechkina, Henry J. Frisch, Klaus Attenkofer, John M. Smedley
  • Patent number: 9911584
    Abstract: In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: March 6, 2018
    Assignee: The University of Chicago
    Inventors: Henry J. Frisch, Matthew Wetstein, Andrey Elagin
  • Publication number: 20180038968
    Abstract: TOF-PET detector systems, and methods for imaging photon-emitting samples using the detector systems, are provided. The TOF-PET detector systems use large-area photodetectors with extremely high time-resolution and an approach to data collection and analysis that allows for the use of inexpensive low-density scintillator materials. The TOF-PET detector systems are characterized by their ability to identify, on a statistical basis, the transverse and depth location of the first of the series of energy deposition events that are generated when a gamma photon enters the low-density scintillator material.
    Type: Application
    Filed: April 8, 2016
    Publication date: February 8, 2018
    Inventors: Henry J. Frisch, Eric J. Oberla, Hee-Jong Kim, Minfang Yeh
  • Publication number: 20170278687
    Abstract: In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 28, 2017
    Inventors: Henry J. Frisch, Matthew Wetstein, Andrey Elagin
  • Patent number: 9139905
    Abstract: A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: September 22, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Seon W. Lee, Hsien-Hau Wang, Michael J. Pellin, Karen Byrum, Henry J. Frisch
  • Publication number: 20110210259
    Abstract: A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.
    Type: Application
    Filed: February 22, 2011
    Publication date: September 1, 2011
    Inventors: Jeffrey W. Elam, Hsien-Hau Wang, Michael J. Pellin, Karen Byrum, Henry J. Frisch, Seon W. Lee
  • Patent number: 7485872
    Abstract: A detector for detecting a particle is disclosed. The detector includes a charge emitter that emits a charge in response to receipt of the particle, an anode for receiving the emitted charge, and electronics for determining whether there is received charge on the anode. The anode may include a pad for receiving the charge and a plurality of conduits (such as transmission lines) for transmitting the charge to the electronics. The anode may be designed to reduce the variance in the path length from the pad of the anode to the electronics. For example, the plurality of conduits in the anode may be constructed such that the transit time of the charge from the pad varies less than a predetermined time. Further, a capacitive element may be included in the detector in order to capacitively couple with the charge emitter. The capacitive element may include a grid that is in the same layer as the pads of the anode in order to provide a short and less variable circuit return path to the charge emitter.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: February 3, 2009
    Assignee: The University of Chicago
    Inventors: Henry J. Frisch, Harold Sanders, Fukun Tang, Tim Credo