Iron, Cobalt, Or Nickel Containing (fe, Co, Or Ni) Patents (Class 556/138)
  • Patent number: 7297806
    Abstract: Alpha-olefin are manufactured in high yield and with very high selectivity by contacting ethylene with an iron complex of a selected 2,6-pyridinedicarboxaldehyde bisimine or a selected 2,6-diacylpyridine bisimine, and in some cases a selected activator compound such as an alkyl aluminum compound. Novel bisimines and their iron complexes are also disclosed. The ?-olefin are useful as monomers and chemical intermediates.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: November 20, 2007
    Assignees: EI du Pont de Nemours and Company, University of North Carolina
    Inventors: Maurice S. Brookhart, III, Brooke L. Small
  • Patent number: 7253213
    Abstract: The invention relates to a process for polymerising a monomer, polymerizing and/or crosslinking an oligomer, or crosslinking a polymer or copolymer, said monomer, oligomer, polymer and copolymer being selected among precursor monomers, urethane, thiourethane and episulfide oligomers, and urethane, thiourethane and episulfide polymers and copolymers, which comprises: (a) adding to precursor monomers or oligomers or polymers or copolymers an effective amount of at least one complex of Co, Mo or W which under irradiation conditions photochemically reacts to release at least one anionically charged nucleophile or uncharged Lewis base; and (b) irradiating the mixture of (a) to release the at least one anionically charged nucleophile or uncharged Lewis base to initiate polymerisation and/or crosslinking of the monomer, oligomer, polymer or copolymer.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: August 7, 2007
    Inventors: Charles R. Kutal, Sirisoma Wanigatunga, Gabriel Keita, Yassin Turshani
  • Patent number: 7250526
    Abstract: A catalytic transfer hydrogenation process is provided. The catalyst employed in the process is a metal hydrocarbyl complex which is coordinated to defined bidentate ligands substituted with at least one group selected from an optionally substituted sulphonated hydrocarbyl group, a sulphonated perhalogenated hydrocarbyl group, or an optionally substituted sulphonated heterocyclyl group. Preferred metals include rhodium, ruthenium and iridium. Preferred bidentate ligands are diamines and aminoalcohols, particularly those comprising chiral centres. The hydrogen donor is advantageously a secondary alcohol or a mixture of triethylamine and formic acid. The process can be employed to transfer hydrogenate ketones and imines, which are preferably prochiral. Catalysts for use in such a process are also provided.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: July 31, 2007
    Assignee: NPIL Pharmaceuticals (UK) Limited
    Inventors: Andrew John Blacker, Christian Bubert, Jonathan Michael Jeremy Williams, Stephen Martin Brown
  • Patent number: 7247687
    Abstract: This invention relates to a transition metal compound represented by the formula LMX wherein M is a Group 3 to 11 metal L is a bulky bidentate or tridentate neutral ligand that is bonded to M by two or three heteroatoms and at least one heteroatom is nitrogen; X is a substituted or unsubstituted catecholate ligand provided that the substituted catecholate ligand does not contain a 1,2-diketone functionality.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Vladimir Kuzunich Cherkasov, Michael Paviovich Bubnov, Nikolay Olegovich Druzhkov, Valentina Nikolavena Glushakova, Irina Alexandrovna Teplova, Nina Aleksandrovna Skorodumova, Gleb Arsent′evich Abakumov, Cynthia A. Ballinger, Kevin R. Squire, Jo Ann Marie Canich, Enock Berluche, Lisa Saunders Baugh, Donald Norman Schulz, Baiyi Zhao
  • Patent number: 7214748
    Abstract: The present invention relates to a process for the production of a catalyst by reacting metal compounds with azo ligands, the catalyst, the use of this catalyst as a polymerization catalyst, a process for olefin (co)polymerization with the aid of these catalysts, reaction products of these catalysts with co-catalysts, the olefin (co)polymer, the use of this olefin (co)polymer for the production of molded parts and also molded parts produced from the olefin (co)catalyst.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: May 8, 2007
    Assignee: Lanxess Deutschland GmbH
    Inventor: Thomas Weiss
  • Patent number: 7205422
    Abstract: Metal ketoiminate or diiminate complexes, containing copper, silver, gold, cobalt, ruthenium, rhodium, platinum, palladium, nickel, osmium, or indium, and methods for making and using same are described herein. In certain embodiments, the metal complexes described herein may be used as precursors to deposit metal and metal-containing films on a substrate through, for example, atomic layer deposition or chemical vapor deposition conditions.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 17, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventor: John Anthony Thomas Norman
  • Patent number: 7189791
    Abstract: This invention relates to a transition metal catalyst compound represented by the formula: LMX2 or (LMX2)2 wherein each M is independently a Group 7 to 11 metal, preferably a Group 7, 8, 9, or 10 metal; each L is, independently, a tridentate or tetradentate neutrally charged ligand that is bonded to M by three or four nitrogen atoms, (where at least one of the nitrogen atoms is a central nitrogen atom and at least two of the nitrogen atoms are terminal nitrogen atoms), and at least two terminal nitrogen atoms are substituted with one C3–C50 hydrocarbyl and one hydrogen atom or two hydrocarbyls wherein at least one hydrocarbyl is a C3–C50 hydrocarbyl, and the central nitrogen atom is bonded to three different carbon atoms or two different carbon atoms and one hydrogen atom; X is independently a monoanionic ligand, or two X may join together to form a bidentate dianionic ligand.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: March 13, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gregory Adam Solan, Christopher James Davies
  • Patent number: 7179871
    Abstract: Non-symmetrical ligands of formula (I); bis-aryliminepyridine MXn complexes comprising a non-symmetrical ligand of formula (I), wherein M is a metal selected from Fe or Co, n is 2 or 3, and X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; [bis-aryliminepyridine MYp.Ln+][NC?]q complexes, comprising a non-symmetrical ligand of formula (I), wherein Y is a ligand which may insert an olefin, M is Fe or Co, NC? is a non-coordinating anion and p+q is 2 or 3, matching the formal oxidation of the metal atom M, L is a neutral Lewis donor molecule and n=0, 1, or 2; and processes for the production of alpha-olefins from ethylene, using said complexes.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: February 20, 2007
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Henderikus Hyacinthus Deuling, Harry Van Der Heijden, Nicolaas Meijboom, Aart Bartus Van Oort, Arie Van Zon
  • Patent number: 7179765
    Abstract: The present invention relates to a process for the preparation of hydrogen peroxide from oxygen or oxygen-delivering substances and hydrogen or hydrogen-delivering substances in the presence of at least one catalyst containing a metal-organic framework material, wherein said framework material comprises pores and a metal ion and an at least bidentate organic compound, said bidentate organic compound being coordinately bound to the metal ion. The invention further relates to a novel material consisting of said metal organic framework material wherein the material is brought in contact with at least one additional metal.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: February 20, 2007
    Assignees: BASF Aktiengesellschaft, The Reagents of the University of Michigan
    Inventors: Ulrich Mueller, Olga Metelkina, Henrik Junicke, Thomas Butz, Omar M. Yaghi
  • Patent number: 7169875
    Abstract: A composition suitable for use as a catalyst for the reaction of an isocyanate compound or prepolymer thereof with an alcohol to form a polyurethane comprises a mixture of (a)an organometallic compound selected from: (i) a compound of formula M(RO)4, where M is titanium, zirconium, hafnium, aluminium, cobalt or iron or a mixture of these metals and OR is the residue of an alcohol ROH in which R comprises an (optionally substituted) C1-30 cyclic, branched or linear, alkyl, alkenyl, aryl or alkyl-aryl group or a mixture thereof, or; (ii) a complex of titanium, zirconium and/or hafnium and an acetoacetate ester and (b) a coordinating compound selected from a ketone, aldhehyde, carboxylic acid, sulphonic acid, nitride or an imine. An isocyanate composition containing a catalyst of the claimed composition is also described.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: January 30, 2007
    Assignee: Johnson Matthey PLC
    Inventor: Bruno Frederic Stengel
  • Patent number: 7148367
    Abstract: The organometallic compound of the present invention is a compound that has bonds between metal atoms and nitrogen atoms or bonds between semimetal atoms and nitrogen atoms, and the content of chlorine in the compound is 200 ppm or less and the content of water is 30 ppm or less. In addition, the general formula of this compound is represented by the following formula (1): M[(R1)2N](n?s)(R2)s??(1) wherein, M represents a metal atom or semimetal atom, with the metal atom being Hf, Zr, Ta, Ti, Ce, Al, V, La, Nb or Ni, and the semimetal atom being Si, R1 represents a methyl group or ethyl group, R2 represents an ethyl group, n represents the valence of M, and s represents an integer of 0 to n?1.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: December 12, 2006
    Assignee: Mitsubishi Materials Corporation
    Inventor: Atsushi Itsuki
  • Patent number: 7087687
    Abstract: A catalytic composition, including a cationic metal-pair complex, is disclosed, along with a method for its preparation. A method for the polymerization of ethylenically unsaturated monomers using the catalytic composition, and the addition polymers produced thereby are also disclosed.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: August 8, 2006
    Assignee: Rohm and Haas Company
    Inventors: Brian Leslie Goodall, Jennifer Lynn Petoff, Han Shen
  • Patent number: 7084288
    Abstract: The object of this invention is to provide an organometallic precursor for forming a metal film or pattern and a method of forming the metal film or pattern using the same. More particularly, the present invention provides an organometallic precursor containing a hydrazine-based compound coordinated with a central metal thereof, and a method of forming a metal film or pattern using the same. Further, the present invention provides a composition containing an organometallic compound and a hydrazine-based compound, and a method of forming a metal film or pattern using the same. Additionally, the present invention is advantageous in that a pure metal film or pattern is formed using the organometallic precursor or composition through a simple procedure without limiting atmospheric conditions at a low temperature, and the film or pattern thus formed has excellent conductivity and morphology. Therefore, the film is useful in an electronic device field including flexible displays and large-sized TFT-LCD.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: August 1, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hae Jung Son, Euk Che Hwang, Sang Yoon Lee, Soon Taik Hwang, Byong Ki Yun
  • Patent number: 7067165
    Abstract: A mineral fortified food matrix can comprise a dimetalhydroxy malate composition and a food matrix fortified with the dimetalhydroxy malate composition. Additionally, a method of administering a mineral in a bioavailable form to a warm-blooded animal can comprise steps of fortifying a food matrix with a dimetalhydroxy malate composition and orally administering the food matrix to a warm-blooded animal. In one embodiment, the mineral can be calcium and the method of administering calcium in a bioavailable form can comprise fortifying a food matrix with a dicalciumhydroxy malate composition.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: June 27, 2006
    Assignee: Albion International, Inc.
    Inventors: Jennifer Hartle, Stephen D. Ashmead, Robert Kreitlow, Earl Christiansen
  • Patent number: 7060768
    Abstract: Certain complexes containing ligands having a phosphino group, amino group or an imino group, and a second functional group such as amide, ester or ketone, when complexed to transition metals, catalyze the (co)polymerization of olefinic compounds such as ethylene, ?-olefins and/or acrylates. A newly recognized class of ligands for making copolymer containing polar monomers using late transition metal complexes is described.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: June 13, 2006
    Assignees: E.I. duPont de Nemours and Company, University of North Carolina at Chapel Hill
    Inventors: Maurice S. Brookhart, Keith Kunitsky, Weijun Liu, Jon M. Malinoski, Lin Wang, Ying Wang, Lynda Kaye Johnson, Kristina A. Kreutzer, Steven Dale Ittel
  • Patent number: 7053020
    Abstract: A catalyst system comprising: (a) one or more bisarylimino pyridine iron or cobalt catalysts; (b) a first co-catalyst compound which is selected from aluminium alkyls, aluminoxanes, and mixtures thereof; and (c) a second co-catalyst compound which comprises one or more compounds of the formula ZnR?2 wherein each R?, which may be the same or different, is selected from hydrogen, optionally substituted C1–C20 hydrocarbyl, phenyl, Cl, Br, I, SR?, NR?2, OH, OR?, CN, NC wherein R?, which within the same molecule may the same or different, is C1–C20 hydrocarbyl.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: May 30, 2006
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Marijke De Boer-Wildschut, Harry Van Der Heijden, Arie Vah Zon
  • Patent number: 7034157
    Abstract: Olefin polymerization catalyst precursors are described herein. The precursors are generally characterized by the formula: wherein M is a transition metal selected from groups 8 to 10 of the Periodic Table; n is an integer of from 1 to 3; Q is a halogen or a C1 to C2 alkyl group; PY is a pyridinyl group, which is coordinated with M through the nitrogen atom of said pyridinyl group; R? is a C1 to C20 hydrocarbyl group; R? is a C1 to C20 hydrocarbyl group; A1 is a monoaromatic group, which is substituted or unsubstituted; and A2 includes multiple aromatic groups, which are substituted or unsubstituted.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: April 25, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Patent number: 7030200
    Abstract: Late transition metal complexes of certain ligands which contain phosphinidine and/or imine groups are useful as components of polymerization catalysts for olefins. Useful metals in the complexes include Ni, Pd, Fe and Co. Oligomers and/or polymers of olefins such as ethylene can be made.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: April 18, 2006
    Assignees: E.I. du Pont de Nemours and Company, University of North Carolina
    Inventors: Maurice Brookhart, Olafs Daugulis
  • Patent number: 6951960
    Abstract: A method for regenerating an amine extractant used for recovery of metals involves contacting a liquid organic phase containing an amine complexed with one or more metals with an aqueous solution substantially free of chloride ions to strip the one or more metals from the organic phase. The stripped organic phase is then contacted with a solution of hydrochloric acid to regenerate the amine extractant which can then be recycled in a production process.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: October 4, 2005
    Assignee: Inco Limited
    Inventor: Jean-Jacques Robert Perraud
  • Patent number: 6939969
    Abstract: This invention provides an amido ligand and its synthesis. Use of the amide ligand in a variety of metal complexes, and transition metals in particular, is also provided.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: September 6, 2005
    Assignee: California Institute of Technology
    Inventors: Jonas C. Peters, Steven D. Brown, Seth B. Harkins
  • Patent number: 6933400
    Abstract: Complexes of the formulae I a to d, where M is an element of groups 6 to 10 of the Periodic Table of the Elements, preferably Ni, can be used for the polymerization and copolymerization of olefins, for example in suspension polymerization processes, gas-phase polymerization processes, bulk polymerization processes and emulsion polymerization processes.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: August 23, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Benno Bildstein, Alexander Krajete
  • Patent number: 6916760
    Abstract: A spray drying process for preparing a solid catalyst and composition for use therein comprising a catalyst compound, an activator for the catalyst compound, and at least one compound selected from among siloxanes, polyalkylene glycols, C1-4 alkyl or phenyl ether or diether derivatives of polyalkylene glycols, and crown ethers, and optionally a filler or support.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: July 12, 2005
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Jessica A. Cook
  • Patent number: 6908875
    Abstract: An organometallic composition, suitable for use in curing polyisocyanate compositions, includes a complex of at least one metal selected from iron, cobalt and aluminum and at least one ?-dicarbonyl compound wherein when the metal is iron (II) or cobalt (II) the molar ratio of ?-dicarbonyl compound to metal is in the range from 2.1:1 to 10:1, and when the metal is aluminum (III), iron (III) or cobalt (III) the molar ratio of ?-dicarbonyl compound to metal is in the range from 3.1:1 to 10:1. A polyisocyanate composition containing the organometallic composition and a process for binding lignocellulosic material is also described.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: June 21, 2005
    Assignee: Acma Limited
    Inventors: Christopher J Skinner, Martin G Partridge
  • Patent number: 6894180
    Abstract: A catalyst system having the following formula is described herein. wherein M is a metal; each X is an atom or group banded to M and may be the same or different; R1 and R2 may be the same or each may be different and are substituted or unsubstituted cyclopentadienyl or aromatic groups; RB is a structural bridge between R1 and R2 imparting stereorigidity thereto and including at least one heteroatom bonded to M, with each of R1 and R2 bonded to the same or different heteroatom of RB which heteroatom is also bonded to M; Z is the coordination number of M and is greater than or equal to 4 and m is the number of bonds between M and heteroatoms of RB.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: May 17, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Abbas Razavi, Margarito Lopez, Didier Baekelmans, Vladimir Marin
  • Patent number: 6864205
    Abstract: A family of novel hetrocyclic-amide type catalyst precursors useful for the polymerization of olefins, such as ethylene, higher alpha-olefins, dienes, and mixtures thereof.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: March 8, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Rex Eugene Murray
  • Patent number: 6855839
    Abstract: This invention relates to a composition of matter represented by the formula below, and to a polymerization process comprising combining an olefin in the gas or slurry phase with an activator, a support and a compound represented by the following formula: wherein M is a group 3 to 14 metal, each X is independently an anionic leaving group, n is the oxidation state of M, m is the formal charge of the YZL ligand, Y is a group 15 element, Z is a group 15 element, L is a group 15 or 16 element, R1 and R2 are independently a C, to C20 hydrocarbon group, a heteroatom containing group, silicon, germanium, tin, lead, phosphorus, a halogen, R1 and R2 may also be interconnected to each other, R3 is absent, or is hydrogen, a group 14 atom containing group, a halogen, a heteroatom containing group, R4 and R5 are independently an aryl group, a substituted aryl group, a cyclic alkyl group, a substituted cyclic alkyl group, or multiple ring system, R6 and R7 are independently absent or hydrogen, halogen, a heteroatom o
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: February 15, 2005
    Inventors: David H. McConville, Richard R. Schrock
  • Patent number: 6855657
    Abstract: 3,3?-Substituted chiral biaryl phosphine and phosphinite ligands and metal complexes based on such chiral ligands useful in asymmetric catalysis are disclosed. The metal complexes are useful as catalysts in asymmetric reactions, such as, hydrogenation, hydride transfer, allylic alkylation, hydrosilylation, hydroboration, hydrovinylation, hydroformylation, olefin metathesis, hydrocarboxylation, isomerization, cyclopropanation, Diels-Alder reaction, Heck reaction, isomerization, Aldol reaction, Michael addition, epoxidation, kinetic resolution and [m+n] cycloaddition. The metal complexes are particularly effective in Ru-catalyzed asymmetric hydrogenation of beta-ketoesters to beta-hydroxyesters and Ru-catalyzed asymmetric hydrogenation of enamides to beta amino acids.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: February 15, 2005
    Assignee: The Penn State Research Foundation
    Inventor: Xumu Zhang
  • Patent number: 6844289
    Abstract: Process for preparing a nickel/ligand catalyst in which a crude ligand mixture is contacted with at least one member selected from the group consisting of (i) a weakly acidic organic resin, (ii) a weakly basic organic resin, (iii) a high-surface-area organic resin, (iv) activated carbon, (v) aluminosilicate zeolite, (vi) a two phase solvent system for liquid-liquid extraction and (vii) a Lewis acid; recovering a solution containing a ligand of the formula (R1O)2POZOP(OR1)2; and contacting the solution with nickel chloride in the presence of a nitrile solvent and a reducing metal which is more electropositive than nickel to produce the nickel/ligand catalyst.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: January 18, 2005
    Assignee: Invista North America S.A.R.L.
    Inventors: Scott Christopher Jackson, Ronald J. McKinney
  • Patent number: 6841693
    Abstract: A transition metal compound of Groups to 10 of the Periodic Table, represented by the following formula (1): wherein M represents a transition metal of Groups 8 to 10 of the Periodic Table; L, electrically neutral, represents a hetero atom-containing hydrocarbon group represented by the following formula (2) wherein R1 to R5 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having form 1 to 20 carbon atoms, a halogenohydrocarbon group having from 1 to 20 carbon atoms, or a hetero atom-containing group, and optionally these groups are bonded to each other to form a ring; R6 represents a hydrogen atom, a hydrocarbon group having form 1 to 40 carbon atoms, a halogenohydrocarbon group having from 1 to 40 carton atoms, or a hetero atom-containing group; L? electrically neutral, represents a hetero atom-containing hydrocarbon group represented by the following formula (3) wherein R7 to R11 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: January 11, 2005
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Masami Watanabe, Haruhito Sato, Masahiko Kuramoto, Shinji Tanaka, Takao Tamura
  • Patent number: 6828454
    Abstract: Complexes of the formula I where M═Ni, Pd; process for preparing the metal complexes and the use of the complexes obtainable in this way for the polymerization and copolymerization of olefins, for example in suspension polymerization processes, gas-phase polymerization processes and bulk polymerization processes.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 7, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Peter Preishuber-Pflügl, Benno Bildstein, Alexander Krajete
  • Patent number: 6812306
    Abstract: Metal compounds of the formula I, where M is selected from among Ni and Pd in the oxidation state +II can be used for the polymerization or copolymerization of olefins. Supported catalysts for the polymerization and copolymerization of olefins can be obtained by application of one or more of the above-described ionic metal compounds to a support.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: November 2, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Peter Hofmann, Frank Eisenträger
  • Publication number: 20040209762
    Abstract: A metal compound obtained by a process comprising the step of contacting, in a specific ratio, a compound represented by the formula M1L1r, a compound represented by the formula R1s-1TH, and a compound represented by the formula R24-nJ(OH)n; a catalyst component for addition polymerization comprising the metal compound; a catalyst for addition polymerization using the catalyst component; and a process for producing an addition polymer using the catalyst.
    Type: Application
    Filed: January 9, 2004
    Publication date: October 21, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kazuo Takaoki, Hideki Oshima, Makoto Satoh
  • Publication number: 20040210071
    Abstract: The organometallic compound of the present invention is a compound that has bonds between metal atoms and nitrogen atoms or bonds between semimetal atoms and nitrogen atoms, and the content of chlorine in the compound is 200 ppm or less and the content of water is 30 ppm or less.
    Type: Application
    Filed: January 23, 2004
    Publication date: October 21, 2004
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventor: Atsushi Itsuki
  • Publication number: 20040198996
    Abstract: The invention concerns an improved method for preparing catalysts for hydrosilylation reactions of compounds with ethylene or acetylene unsaturation (for example olefins or acetylene derivatives), in particular but not exclusively those involving polyorganosiloxanes (POS) bearing Si—H units and POS bearing Si-(ethylene or acetylene unsaturation) units. Said preparation corresponds to the following synthesis (I), wherein: A═B=carbon: T1, T2=cyclohexyl, t-butyl or methyl; T3, T4=H; DVTMS=divinyltetramethylsiloxane; t-BuOK=potassium tert-butylate; T.A=room temperature. The invention is characterised in that it consists in carrying out said synthesis in a single step by bringing together salt (III) above, Karstedt (IV) in the presence of a solvent (V) (THF) and a base (VI) (t-BuOK) at room temperature.
    Type: Application
    Filed: May 25, 2004
    Publication date: October 7, 2004
    Inventors: Olivier Buisine, Istvan Marko, Sebastien Sterin
  • Patent number: 6800774
    Abstract: The present invention provides a polynuclear &agr;-diimine Ni(II) complex used as the precursor of the catalyst in polymerizing polyolefine, represented by the following formula: wherein M is Ni; X is Cl or Br; m and n is independently an integer from 0 to 100, respectively; R1 and R2 is the same or different, and is selected from the group consisting of H, methyl, ethyl, isopropyl and tert-butyl; Y is CR3R4, wherein R3 and R4 is the same or different, and is selected from the group consisting of H, methyl, ethyl, propyl, butyl and phenyl, or R3 and R4 forming a cyclic alkyl group; R5 and R6 is the same or different, and is selected from the group consisting of methyl, ethyl, propyl and heterocyclic group; Q is a cyclic divalent residual group of the following formula or a mixture thereof: The compound of this invention can be used to catalyze the polymerization of ethylene and to prepare high molecular weight branched polyethylene.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: October 5, 2004
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Science
    Inventors: Yuesheng Li, Jingyu Liu, Ke Dai, Yi Zheng
  • Patent number: 6780947
    Abstract: Organometallic complex having the formula (IAP)M(X)n which can be used for die formation of catalytic systems wherein: M is a metal selected from transition metals and lanthanides, in oxidation state “s” positive and different from zero; each X is independently a group of an anionic nature bound to the metal as an anion in an ionic couple or with a convalent bond of the “&sgr;” type; “n” expresses the number of X groups sufficient for neutralizing the formal “+s” charge of the metal M, and (IAP) represents a neutral bond consisting of a mono-imine of 2,6-diacylpyridine. Said complex is prepared with relatively simple methods and can be used, combined with a suitable co-catalyst, such as for example, an aluminoxane, as a catalyst in normal (co)polymerization processes of &agr;-olefins, and especially ethylene.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: August 24, 2004
    Assignee: Enichem S.p.A.
    Inventors: Anna Sommazzi, Barbara Milani, Antonio Proto, Gianni Corso, Giovanni Mestroni, Francesco Masi
  • Patent number: 6777565
    Abstract: Disclosed are organometallic compounds derived from Groups VIIb, VIII, IX, and X metals useful as precursors for the formation of metal containing powders and for the chemical deposition of the metals on substrates, particularly for the chemical vapor deposition of metal films suitable for the manufacture of electronic devices. Methods for their use are also disclosed.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: August 17, 2004
    Assignee: Board of Trustees, The University of Illinois
    Inventor: Hyungsoo Choi
  • Publication number: 20040158012
    Abstract: Certain complexes containing ligands having a phosphino group, amino group or an imino group, and a second functional group such as amide, ester or ketone, when complexed to transition metals, catalyze the (co)polymerization of olefinic compounds such as ethylene, &agr;-olefins and/or acrylates. A newly recognized class of ligands for making copolymer containing polar monomers using late transition metal complexes is described.
    Type: Application
    Filed: January 20, 2004
    Publication date: August 12, 2004
    Inventors: Maurice S. Brookhart, Keith Kunitsky, Weijun Liu, Jon M. Malinoski, Lin Wang, Ying Wang, Lynda Kaye Johnson, Kristina A. Kreutzer, Steven Dale Ittel
  • Patent number: 6770773
    Abstract: The present invention relates to ferroxanes and a method of making wherein a ferroxane may be defined by the general formula [Fe(O)x(OH)y(O2CR)z]n wherein x, y and z may be any integer or fraction such that 2x+y+z=3 and n may be any integer. The ferroxanes may be doped with at least one other element other than iron. The present invention further relates to a ceramic made from the ferroxanes of the present invention and a method of making. The present invention still further relates to supported and unsupported membranes made from the ceramic of the present invention.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: August 3, 2004
    Assignee: William Marsh Rice University
    Inventors: Jerome Rose, Mark Wiesner, Andrew Barron
  • Patent number: 6770771
    Abstract: Various olefins may be polymerized using a catalyst systems containing selected &agr;-diimine, urethane or urea ligands, some of them novel, complexed to nickel, palladium or other selected transition metals. The polymers are useful as molding resins and elastomers.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: August 3, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Lynda Kaye Johnson, Lissa Taka Jennings Nelson
  • Publication number: 20040138433
    Abstract: A metal bis-triflimide compound having the formula: [Mx]n+[(N(SO2CF3)2)(nx-yz)](nx-yz)−[Ly]z− where M is a metal selected from the metals in groups 5 to 10, 12 and 14 to 16 and Cu, Au, Ca, Sr, Ba, Ra, Y, La, Ac, Hf, Rf, Ga, In, Tl, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and the actinides; L is a negative or neutral ligand; n is 2,3,4,5,6,7 or 8; x is greater than or equal to 1 y is 0,1,2,3,4,5,6,7 or 8; and z is 0,1,2,3 or 4.
    Type: Application
    Filed: February 25, 2004
    Publication date: July 15, 2004
    Inventors: Martyn J. Earle, Barry Joseph Mcauley, Alwar Ramani, Kenneth Richard Seddon, Jillian M. Thomson
  • Publication number: 20040116281
    Abstract: The present invention is directed to polyols prepared in the presence of double metal cyanide catalysts (“DMC”) which are prepared by combining i) at least one metal salt; ii) at least one metal cyanide salt; iii) at least one organic complexing ligand; iv) at least one alkali metal salt; and, optionally, v) at least one functionalized polymer under conditions sufficient to form a catalyst; and adding a sufficient amount of the at least one alkali metal salt to the catalyst so formed in an amount such that the catalyst includes the at least one alkali metal salt in an amount of from about 0.4 to about 6 wt. % based on the total weight of the catalyst. The polyols produced by the process of the present invention have reduced levels of high molecular weight tail.
    Type: Application
    Filed: November 19, 2003
    Publication date: June 17, 2004
    Inventors: Bi Le-Khac, Wei Wang
  • Patent number: 6740715
    Abstract: Alpha-olefins are manufactured in high yield and with very high selectivity by contacting ethylene with an iron complex of a selected 2,6-pyridinedicarboxaldehyde bisimine or a selected 2,6-diacylpyridine bisimine, and in some cases a selected activator compound such as an alkyl aluminum compound. Novel bisimines and their iron complexes are also disclosed. The &agr;-olefins are useful as monomers and chemical intermediates.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: May 25, 2004
    Assignees: E. I. du Pont de Nemours and Company, University of North Carolina
    Inventors: Maurice S. Brookhart, III, Brooke L. Small
  • Patent number: 6716927
    Abstract: Amines having an unsaturated bond can be introduced into the organic layer of organic-inorganic laminar perovskite compounds comprising a metal halide and an organic amine, and the organic layer can be polymerized by applying external energy such as by irradiating with UV light or radiation. In this way, the quantum well structure is stabilized. The organic-inorganic laminar perovskite polymer compound is produced by cross-linking unsaturated bonds of an organic-inorganic laminar perovskite compound represented by the general formula (RNH3)2MX4 (in the formula, R is a hydrocarbon group having an unsaturated bond, X is a halogen or mixture of same, M is Group IVa metal, Eu, Cd, Cu, Fe, Mn or Pd). R is represented by CH3(CH2)nC≡C—C≡CCH2 (n=2-14). It is preferred that M is Pb, and X is a bromine atom.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: April 6, 2004
    Assignee: Japan Science and Technology Agency
    Inventors: Yuko Takeoka, Keisuke Asai
  • Patent number: 6710006
    Abstract: Non-symmetrical ligands of formula (I); bis-aryliminepyridine MXn complexes comprising a non-symmetrical ligand of formula (I), wherein M is a metal selected from Fe or Co, n is 2 or 3, and X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; [bis-aryliminepyridine MYp.Ln+][NC−]q complexes, comprising a non-symmetrical ligand of formula (I), wherein Y is a ligand which may insert an olefin, M is Fe or Co, NC− is a non-coordinating anion and p+q is 2 or 3, matching the formal oxidation of the metal atom M, L is a neutral Lewis donor molecule and n=0, 1, or 2; and processes for the production of alpha-olefins from ethylene, using said complexes.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: March 23, 2004
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Henderikus Hyacinthus Deuling, Harry Van Der Heijden, Nicolaas Meijboom, Aart Bartus Van Oort, Arie Van Zon
  • Patent number: 6710007
    Abstract: Certain complexes containing ligands having a phosphino group, amino group or an imino group, and a second functional group such as amide, ester or ketone, when complexed to transition metals, catalyze the (co)polymerization of olefinic compounds such as ethylene, &agr;-olefins and/or acrylates. A newly recognized class of ligands for making copolymer containing polar monomers using late transition metal complexes is described.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: March 23, 2004
    Assignees: E. I. du Pont de Nemours and Company, University of North Carolina at Chapel Hill
    Inventors: Maurice S. Brookhart, Keith Kunitsky, Weijun Liu, Jon M. Malinoski, Lin Wang, Ying Wang, Lynda Kaye Johnson, Kristina A. Kreutzer, Steven Dale Ittel
  • Patent number: 6706904
    Abstract: Dimetalhydroxy malate compositions as well as methods of administering and making such bioavailable compositions are provided. The metal used can be any nutritionally relevant divalent metal such as calcium, magnesium, zinc, copper, manganese, and iron. The composition can be prepared by reacting malic acid with a divalent metal oxide or hydroxide at a 1:2 molar ratio. The composition can be administered to a warm-blooded animal by any of a number of known delivery routes, including oral delivery.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: March 16, 2004
    Assignee: Albion International, Inc.
    Inventors: Jennifer Hartle, Stephen D. Ashmead, Robert Kreitlow
  • Patent number: 6706249
    Abstract: A composite metal polybasic salt containing a trivalent metal and magnesium as metal components and having a novel crystal structure, and a method of preparing the same. The invention further deals with a composite metal polybasic salt which has anion-exchanging property, which by itself is useful as an anion-exchanger, capable of introducing anions suited for the use upon anion-exchange, and finds a wide range of applications, and a method of preparing the same. The composite metal polybasic salt has a particular chemical composition and X-ray diffraction peaks, and further has a degree of orientation (Io) of not smaller than 1.5.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: March 16, 2004
    Assignee: Mizusawa Industrial Chemicals Ltd.
    Inventors: Yoshinobu Komatsu, Hitoshi Ishida, Hiroshi Igarashi, Masami Kondo, Madoka Minagawa, Tetsu Sato, Teiji Sato
  • Publication number: 20040044208
    Abstract: This invention relates to high purity hydrogen ion buffers and in particular amino-organosulfonic acid zwitterionic compositions having low metal content. The concentration of any single metal in the composition is no greater than about 500 ppb, and ideally is less than about 20 ppb.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Applicant: Buffers & Biochemicals Corporation
    Inventors: David Bow, Glenn Thomas Carroll
  • Patent number: 6686446
    Abstract: Methods and compositions for the generation of polypeptides having varied material properties are disclosed herein. Methods include means for initiating the polymerization of aminoacid-N-carboxyanhydride (NCA) monomer by combining the monomer with an amido-containing metallacycle, for making self assembling amphiphilic block copolypeptides and related protocols for adding oligo(ethyleneglycol) functionalized aminoacid-N-carboxyanhydrides (NCAs) to polyaminoacid chains. Additional methods include means of adding an end group to the carboxy terminus of a polyaminoacid chain by reacting an alloc-protected amino acid amide with a transition metal-donor ligand complex to forming an amido-amidate metallacycle for use in further polymerization reactions. Novel compositions for use in peptide synthesis and design including five and six membered amido-containing metallacycles and block copolypeptides are also disclosed.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: February 3, 2004
    Assignee: The Regents of the University of California
    Inventors: Timothy J. Deming, Miaoer Yu, Scott A. Curtin, Jungyeon Hwang, Michael D. Wyrsta, Andrew Nowak, Scott W. Seidel