Patents Examined by Mary Wilczewski
  • Patent number: 11791218
    Abstract: A method includes providing a structure having a substrate, first and second channel layers over the substrate, and first and second gate dielectric layers over the first and the second channel layers respectively. The method further includes forming a first dipole pattern over the first gate dielectric layer, the first dipole pattern having a first dipole material that is of a first conductivity type; forming a second dipole pattern over the second gate dielectric layer, the second dipole pattern having a second dipole material that is of a second conductivity type opposite to the first conductivity type; and annealing the structure such that elements of the first dipole pattern are driven into the first gate dielectric layer and elements of the second dipole pattern are driven into the second gate dielectric layer.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Chih-Hao Wang
  • Patent number: 11791406
    Abstract: A first gate wiring layer is a 2-layered structure in which a polysilicon wiring layer and a metal wiring layer containing aluminum are sequentially stacked. The polysilicon wiring layer and the metal wiring layer surround a periphery of an active region. In a portion of a periphery of the first gate wiring layer, the polysilicon wiring layer and the metal wiring layer contact each other via a contact hole of an interlayer insulating film and in remaining portions thereof, are electrically insulated from each other by the interlayer insulating film. The first gate wiring layer, in portion separate from a gate pad, is configured having relatively more of the metal wiring layer with a resistance value lower than that of the polysilicon wiring layer. The resistance value of the first gate wiring layer is adjusted to be relatively high in a portion near the gate pad, as compared to the portion separate from the gate pad.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 17, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Kenichi Ishii
  • Patent number: 11778821
    Abstract: A semiconductor memory device with improved reliability and a related method are provided. The semiconductor memory device includes a mold structure including a plurality of gate electrodes and a plurality of mold insulating films on a first substrate, a channel structure penetrating the mold structure and crossing a respective level of each of the gate electrodes, a plurality of first insulating patterns in the mold structure, the first insulating patterns including a material different from that of the mold insulating films, and a first through via in the first insulating patterns, the first through via penetrating the first substrate and the mold structure. The gate electrodes include a first word line and a second word line on the first word line. A first distance from the first word line to the first through via is different from a second distance from the second word line to the first through via.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 3, 2023
    Inventors: Joon Sung Kim, Byoung Il Lee, Seong-Hun Jeong, Jun Eon Jin
  • Patent number: 11764101
    Abstract: A susceptor for semiconductor substrate processing is disclosed herein. In some embodiments, the susceptor may comprise an inner susceptor portion and an outer susceptor portion. The susceptor portions may self-align via complementary features, such as tabs on the outer susceptor and recesses on the inner susceptor portion. The inner susceptor portion may contain several contact pads with which to support a wafer during semiconductor processing. In some embodiments, the contact pads are hemispherical to reduce contact area with the wafer, thereby reducing risk of backside damage. The inner susceptor portion may contain a cavity with which to receive a thermocouple. In some embodiments, the diameter of the cavity is greater than the diameter of the thermocouple such that the thermocouple does not contact the walls of the cavity during processing, thereby providing highly accurate temperature measurements.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: September 19, 2023
    Assignee: ASM IP Holding, B.V.
    Inventors: Saket Rathi, Shiva K. T. Rajavelu Muralidhar, Siyao Luan, Alexandros Demos, Xing Lin
  • Patent number: 11757020
    Abstract: A method includes forming a fin extending from a substrate; forming an first isolation region along opposing sidewalls of the fin; forming a gate structure over the fin; forming an epitaxial source/drain region in the fin adjacent the gate structure; forming an etch stop layer over the epitaxial source/drain region and over the gate structure; forming a protection layer over the etch stop layer, the protection layer including silicon oxynitride; and forming a second isolation material over the protection layer, wherein forming the second isolation material reduces a nitrogen concentration of the protection layer.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wan-Yi Kao, Che-Hao Chang, Yung-Cheng Lu, Chi On Chui
  • Patent number: 11756876
    Abstract: A semiconductor device includes a base, source, drain and gate electrodes, signal tracks and a power mesh. The source, drain and gate electrodes are arranged on a surface of the base, wherein the gate electrodes are extended along a first direction. The signal tracks arranged above the first surface of the base and above the source and drain electrodes and the gate electrodes, wherein the signal tracks are extended along the first directions. A power mesh is arranged below the first surface of the base, the power mesh comprising first power rails extended in the second direction and second power rails extended in a first direction, wherein the second direction is substantially perpendicular to the first direction.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wei-An Lai, Wei-Cheng Lin, Jiann-Tyng Tzeng
  • Patent number: 11749752
    Abstract: The present disclosure relates to a method of forming a transistor device. The method may be performed by forming a gate structure onto a semiconductor substrate and forming a source/drain recess within the semiconductor substrate adjacent to a side of the gate structure. One or more strain inducing materials are formed within the source/drain recess. The one or more strain inducing materials include a strain inducing component with a strain inducing component concentration profile that continuously decreases from a bottommost surface of the one or more strain inducing materials to a position above the bottommost surface. The bottommost surface contacts the semiconductor substrate.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: September 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Patent number: 11742357
    Abstract: A display device includes a substrate, pixels on the substrate, pads, and test lines. The pads are between the pixels and an edge of the substrate and include a first pad and a second pad. The test lines include a first test line and a second test line. The first test line includes a first section and a second section. The second section is closer to the edge of the substrate than the first section and is connected through the first section to the first pad. The second test line includes a first segment and a second segment. The second segment is closer to the edge of the substrate than the first segment and is connected through the first segment to the second pad. A minimum distance between the first section and the first segment is larger than a minimum distance between the second section and the second segment.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 29, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun Seop Song, Seung Jae Kang, Yeon-Sung Kim, Po-Yun Park, Bong Chun Park, Il Hyun Yang
  • Patent number: 11729985
    Abstract: According to one embodiment, a semiconductor memory device includes first to second areas, a plurality of conductive layers, first to fourth members, and a plurality of pillars. The second area includes a first contact area including first to third sub-areas. The conductive layers include first to fourth conductive layers. The first conductive layer includes a first terrace portion in the first sub-area. The second conductive layer includes a second terrace portion in the third sub-area. The third conductive layer includes a third terrace portion in the first sub-area. The fourth conductive layer includes a fourth terrace portion in the third sub-area.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: August 15, 2023
    Assignee: Kioxia Corporation
    Inventor: Kojiro Shimizu
  • Patent number: 11721727
    Abstract: A memory device includes a silicon-germanium source contact layer, an alternating stack of insulating layers and electrically conductive layers located over the silicon-germanium source contact layer, and a memory stack structure vertically extending through the alternating stack. The memory stack structure comprises a memory film and a vertical semiconductor channel that contacts the memory film. The silicon-germanium source contact layer contacts a cylindrical portion of an outer sidewall of the vertical semiconductor channel. Logic circuits for operating the memory elements may be provided on a substrate within a same semiconductor die, or may be provided in another semiconductor die that is bonded to the semiconductor die containing the memory device.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: August 8, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ashish Baraskar, Raghuveer S. Makala, Peter Rabkin
  • Patent number: 11713241
    Abstract: The present disclosure provides a packaging method, including: providing a first semiconductor substrate; forming a bonding region on the first semiconductor substrate, wherein the bonding region of the first semiconductor substrate includes a first bonding metal layer and a second bonding metal layer; providing a second semiconductor substrate having a bonding region, wherein the bonding region of the second semiconductor substrate includes a third bonding layer; and bonding the first semiconductor substrate to the second semiconductor substrate by bringing the bonding region of the first semiconductor substrate in contact with the bonding region of the second semiconductor substrate; wherein the first and third bonding metal layers include copper (Cu), and the second bonding metal layer includes Tin (Sn). An associated packaging structure is also disclosed.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Ming Chen, Yuan-Chih Hsieh, Chung-Yi Yu
  • Patent number: 11715785
    Abstract: A semiconductor device includes a gate structure located on a substrate; and a raised source/drain region adjacent to the gate structure. An interface is between the gate structure and the substrate. The raised source/drain region includes a stressor layer providing strain to a channel under the gate structure; and a silicide layer in the stressor layer. The silicide layer extends from a top surface of the raised source/drain region and ends below the interface by a predetermined depth. The predetermined depth allows the stressor layer to maintain the strain of the channel.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shin-Jiun Kuang, Yi-Han Wang, Tsung-Hsing Yu, Yi-Ming Sheu
  • Patent number: 11715777
    Abstract: A semiconductor device including source/drain contacts extending into source/drain regions, below topmost surfaces of the source/drain regions, and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate; a first channel region over the semiconductor substrate; a first gate stack over the semiconductor substrate and surrounding four sides of the first channel region; a first epitaxial source/drain region adjacent the first gate stack and the first channel region; and a first source/drain contact coupled to the first epitaxial source/drain region, a bottommost surface of the first source/drain contact extending below a topmost surface of the first channel region.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Guan-Ren Wang, Yun-Min Chang, Yu-Lien Huang, Ching-Feng Fu
  • Patent number: 11715684
    Abstract: A semiconductor device includes lower circuit patterns on a lower substrate; lower bonding patterns on the lower circuit patterns, the lower bonding patterns including a conductive material and being electrically connected to the lower circuit patterns; upper bonding patterns on and contacting the lower bonding patterns, and including a conductive material; a passive device on the upper bonding patterns, and including a conductive material and contacting one of the upper bonding patterns; a gate electrode structure on the passive device, and including gate electrodes spaced apart from each other in a first direction, each of which extends in a second direction, and extension lengths in the second direction of the gate electrodes increasing from a lowermost level toward an uppermost level in a stepwise manner; a channel extending through at least a portion of the gate electrode structure; and an upper substrate on the channel.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 1, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sungmin Hwang, Jiwon Kim, Jaeho Ahn, Joonsung Lim, Sukkang Sung
  • Patent number: 11716847
    Abstract: A semiconductor device is provided. The semiconductor device includes word line layers and insulating layers that are alternatingly stacked along a vertical direction perpendicular to a substrate of the semiconductor device. The semiconductor device includes a channel structure that extends along the vertical direction through the word line layers and the insulating layers. A cross-section of the channel structure that is perpendicular to the vertical axis includes channel layer sections that are spaced apart from one another.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: August 1, 2023
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Tingting Gao, Lei Xue, Xiaoxin Liu, Wanbo Geng
  • Patent number: 11710695
    Abstract: A semiconductor device has a substrate, a first circuit, a first inductor, a second circuit and a second inductor IND2. The substrate includes a first region and a second region, which are regions different from each other. The first circuit is formed on the first region. The first inductor is electrically connected with the first circuit. The second circuit is formed on the second regions. The second inductor is electrically connected with the second circuit and formed to face the first inductor. A penetrating portion is formed in the substrate. The penetrating portion is formed such that the penetrating portion surrounds one or both of the first circuit and the second circuit in plan view.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: July 25, 2023
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Yasutaka Nakashiba
  • Patent number: 11711919
    Abstract: A semiconductor memory device comprises: a plurality of first conductive layers arranged separated from each other in a first direction; a plurality of second conductive layers arranged, electrically insulated from the plurality of first conductive layers, at a different position in a second direction intersecting the first direction with respect to the first conductive layers; a plurality of memory structures; and a source structure. Respective one ends of the plurality of memory structures and one end of the source structure are electrically connected. The respective other ends of the plurality of memory structures are respectively electrically connected to different first wirings of a plurality of first wirings formed in the same layer in the first direction. The other end of the source structure is electrically connected to a second wiring formed in a different layer from the plurality of first wirings in the first direction.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: July 25, 2023
    Assignee: Kioxia Corporation
    Inventor: Daigo Ichinose
  • Patent number: 11710660
    Abstract: A laser irradiation method of irradiating, with a pulse laser beam, an irradiation object in which an impurity source film is formed on a semiconductor substrate includes: reading fluence per pulse of the pulse laser beam with which a rectangular irradiation region set on the irradiation object is irradiated and the number of irradiation pulses the irradiation region is irradiated, the fluence being equal to or larger than a threshold at or beyond which ablation potentially occurs to the impurity source film when the irradiation object is irradiated with pulses of the pulse laser beam in the irradiation pulse number and smaller than a threshold at or beyond which damage potentially occurs to the surface of the semiconductor substrate; calculating a scanning speed Vdx; and moving the irradiation object at the scanning speed Vdx relative to the irradiation region while irradiating the irradiation region with the pulse laser beam at the repetition frequency f.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: July 25, 2023
    Assignees: Gigaphoton Inc., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Hiroshi Ikenoue, Osamu Wakabayashi, Hiroaki Oizumi, Akira Suwa
  • Patent number: 11694920
    Abstract: A substrate support device relating to technology disclosed in the description of the present application includes: a holding plate for opposing a substrate bowable by being heated by irradiation with flash light; and a plurality of substrate support pins provided on the holding plate and being for supporting the substrate, wherein the plurality of substrate support pins are arranged at locations where a volume of a space between the holding plate and the substrate in an unbowed state and a volume of a space between the holding plate and the substrate in a bowed state are equal to each other. Breakage of the substrate can be suppressed in a case where the substrate is bowed by flash light.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: July 4, 2023
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Scott Prengle
  • Patent number: 11688615
    Abstract: A semiconductor process system includes a wafer support and a control system. The wafer support includes a plurality of heating elements and a plurality of temperature sensors. The heating elements heat a semiconductor wafer supported by the support system. The temperature sensors generate sensor signals indicative of a temperature. The control system selectively controls the heating elements responsive to the sensor signals.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: June 27, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Hao Cheng, Hsuan-Chih Chu, Yen-Yu Chen