Light Responsive Pn Junction Patents (Class 257/461)
  • Patent number: 8742531
    Abstract: The present invention relates generally to electrical devices. The present invention relates more particularly to electrical devices including dendritic metal electrodes. One aspect of the present invention is an electrical device comprising a first electrode comprising at least one dendritic metal structure; a second electrode; and an electrically active structure disposed between the dendritic metal structure and the second electrode.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: June 3, 2014
    Assignee: Arizona Board of Regents, Acting for and on Behalf of Arizona State University
    Inventor: Michael Kozicki
  • Patent number: 8734008
    Abstract: An active sensor apparatus includes an array of sensor elements arranged in a plurality of columns and rows of sensor elements. The sensor apparatus includes a plurality of column and row thin film transistor switches for selectively activating the sensor elements, and a plurality of column and row thin film diodes for selectively accessing the sensor elements to obtain information from the sensor elements. The thin film transistor switches and thin film diodes are formed on a common substrate.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: May 27, 2014
    Assignee: Next Biometrics AS
    Inventor: Matias N. Troccoli
  • Patent number: 8716712
    Abstract: An object of the invention is to improve the accuracy of light detection in a photosensor, and to increase the light-receiving area of the photosensor. The photosensor includes: a light-receiving element which converts light into an electric signal; a first transistor which transfers the electric signal; and a second transistor which amplifies the electric signal. The light-receiving element includes a silicon semiconductor, and the first transistor includes an oxide semiconductor. The light-receiving element is a lateral-junction photodiode, and an n-region or a p-region included in the light-receiving element overlaps with the first transistor.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 6, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Munehiro Kozuma, Yoshiyuki Kurokawa
  • Patent number: 8715814
    Abstract: A method, apparatus and material produced thereby in an amorphous or crystalline form having multiple elements with a uniform molecular distribution of elements at the molecular level.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: May 6, 2014
    Inventor: L. Pierre de Rochemont
  • Patent number: 8716821
    Abstract: A semiconductor device contains a photodiode which includes a buried collection region formed by a bandgap well to vertically confine photo-generated minority carriers. the bandgap well has the same conductivity as the semiconductor material immediately above and below the bandgap well. A net average doping density in the bandgap well is at least a factor of ten less than net average doping densities immediately above and below the bandgap well. A node of the photodiode, either the anode or the cathode, is connected to the buried collection region to collect the minority carriers, the polarity of the node matches the polarity of the minority carriers. The photodiode node connected to the buried collection region occupies less lateral area than the lateral area of the buried collection region.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: May 6, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Henry Litzmann Edwards, Dimitar Trifonov Trifonov
  • Patent number: 8709958
    Abstract: An embodiment of the invention provides a solid-state image pickup element, including: a semiconductor layer having a photodiode, photoelectric conversion being carried out in the photodiode; a silicon oxide film formed on the semiconductor layer in a region having at least the photodiode by using plasma; and a film formed on the silicon oxide film and having negative fixed charges.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: April 29, 2014
    Assignee: Sony Corporation
    Inventors: Itaru Oshiyama, Susumu Hiyama
  • Patent number: 8704324
    Abstract: A solid state imaging device including a semiconductor layer comprising a plurality of photodiodes, a first antireflection film located over a first surface of the semiconductor layer, a second antireflection film located over the first antireflection film, a light shielding layer having side surfaces which are adjacent to at least one of first and the second antireflection film.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: April 22, 2014
    Assignee: Sony Corporation
    Inventors: Susumu Hiyama, Kazufumi Watanabe
  • Patent number: 8698271
    Abstract: Provided is a germanium photodetector having a germanium epitaxial layer formed without using a buffer layer and a method of fabricating the same. In the method, an amorphous germanium layer is formed on a substrate. The amorphous germanium layer is heated up to a high temperature to form a crystallized germanium layer. A germanium epitaxial layer is formed on the crystallized germanium layer.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: April 15, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dongwoo Suh, Sang Hoon Kim, Gyungock Kim, JiHo Joo
  • Patent number: 8698272
    Abstract: Optoelectronic devices, materials, and associated methods having increased operating performance are provided. In one aspect, for example, an optoelectronic device can include a semiconductor material, a first doped region in the semiconductor material, a second doped region in the semiconductor material forming a junction with the first doped region, and a laser processed region associated with the junction. The laser processed region is positioned to interact with electromagnetic radiation. Additionally, at least a portion of a region of laser damage from the laser processed region has been removed such that the optoelectronic device has an open circuit voltage of from about 500 mV to about 800 mV.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 15, 2014
    Assignee: SiOnyx, Inc.
    Inventors: Christopher Vineis, James Carey, Xia Li
  • Patent number: 8698267
    Abstract: An electrode includes a substantially planar metallic thin film layer with a patterned structure including a plurality of parallel lines or a plurality of crossed lines, the metallic thin film layer configured to transmit an incident light through the metallic thin film layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 15, 2014
    Assignee: South China Normal University
    Inventors: Yang Wang, Krzysztof Kempa, Zhifeng Ren
  • Patent number: 8698208
    Abstract: A manufacturing method of a photoelectric conversion device comprises a first step of forming a gate electrode, a second step of forming a semiconductor region of a first conductivity type, a third step of forming an insulation film, and a fourth step of forming a protection region of a second conductivity type, which is the opposite conductivity type to the first conductivity type, by implanting ions in the semiconductor region using the gate electrode of the transfer transistor and a portion covering a side face of the gate electrode of the transfer transistor of the insulation film as a mask in a state in which the semiconductor substrate and the gate electrode of the transfer transistor are covered by the insulation film, and causing a portion of the semiconductor region of the first conductivity type from which the protection region is removed to be the charge accumulation region.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 15, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryuichi Mishima, Mineo Shimotsusa, Hiroaki Naruse
  • Patent number: 8692347
    Abstract: A solid-state imaging device includes: a gate electrode arranged over an upper surface of a semiconductor substrate; a photoelectric conversion portion formed over the semiconductor substrate to position under the gate electrode; an overflow barrier formed over the semiconductor substrate to position in a portion other than a position facing the gate electrode in a planar direction and adjoin a side face of the photoelectric conversion portion; and a drain formed over the semiconductor substrate to adjoin a side face of the overflow barrier opposite to a side face adjoining the photoelectric conversion portion.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: April 8, 2014
    Assignee: Sony Corporation
    Inventor: Sosuke Narisawa
  • Patent number: 8686529
    Abstract: The present invention is directed toward a dual junction photodiode semiconductor devices with improved wavelength sensitivity. The photodiode employs a high quality n-type layer with relatively lower doping concentration and enables high minority carrier lifetime and high quantum efficiency with improved responsivity at multiple wavelengths. In one embodiment, the photodiode comprises a semiconductor substrate of a first conductivity type, a first impurity region of a second conductivity type formed epitaxially in the semiconductor substrate, a second impurity region of the first conductivity type shallowly formed in the epitaxially formed first impurity region, a first PN junction formed between the epitaxially formed first impurity region and the second impurity region, a second PN junction formed between the semiconductor substrate and the epitaxially formed first impurity region, and at least one passivated V-groove etched into the epitaxially formed first impurity region and the semiconductor substrate.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 1, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja, Manoocher Mansouri Aliabadi
  • Publication number: 20140084409
    Abstract: An imaging system may include an image sensor having an array of image pixels formed in a substrate. Each image pixel may include a photodiode directly coupled to an anti-blooming diode. The anti-blooming diode may be connected to a positive voltage supply line and may be configured to drain excess charge from the photodiode when the photodiode is saturated. The anti-blooming drain may be formed from an n-type diffusion region partially surrounded by a p-type doped layer. The p-type doped layer may be interposed between and in contact with the n-type diffusion region of the anti-blooming diode and an n-type doped region of the photodiode. The anti-blooming diode may begin to drain excess charge from the photodiode in response to the photodiode reaching a threshold potential during integration. If desired, multiple pixels may share a common anti-blooming diode.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Applicant: Aptina Imaging Corporation
    Inventor: Satyadev Nagaraja
  • Patent number: 8680642
    Abstract: A device with increased photo-sensitivity using laser treated semiconductor as detection material is disclosed. In some embodiments, the laser treated semiconductor may be placed between and an n-type and a p-type contact or two Schottky metals. The field within the p-n junction or the Schottky metal junction may aid in depleting the laser treated semiconductor section and may be capable of separating electron hole pairs. Multiple device configurations are presented, including lateral and vertical configurations.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: March 25, 2014
    Assignee: Sionyx, Inc.
    Inventors: Nathaniel J. McCaffrey, James E. Carey
  • Publication number: 20140070354
    Abstract: A layer of an n-type chalcogenide compositions provided on a substrate in the presence of an oxidizing gas in an amount sufficient to provide a resistivity to the layer that is less than the resistivity a layer deposited under identical conditions but in the substantial absence of oxygen.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Todd R. Bryden, Buford I. Lemon, Joseph George, Rebekah Kristine Ligman Feist
  • Patent number: 8669588
    Abstract: A unit cell for use in an imaging system may include an absorber layer of semiconductor material formed on a semiconductor substrate, at least one contact including semiconductor material formed on the semiconductor substrate and electrically coupled to the absorber layer, and a cap layer of semiconductor material formed on the semiconductor substrate and electrically coupled to and formed between the absorber layer and the at least one contact. The absorber layer may be configured to absorb incident photons such that the absorbed photons excite electrons in the absorber layer to generate a photocurrent. The at least one contact may be configured to conduct the photocurrent to one or more electrical components external to the unit cell. The cap layer may be configured to conduct the photocurrent between the absorber layer and the at least one contact.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: March 11, 2014
    Assignee: Raytheon Company
    Inventors: Edward Peter Gordon Smith, Gregory Mark Venzor, Eric J. Beuville
  • Patent number: 8669626
    Abstract: An optical sensor that is a transistor which includes a gate electrode including a semiconductor material where the carrier concentration is 1.0×1014/cm3 to 1.0×1017/cm3, an active layer including a semiconductor layer to form a channel by carriers of the same type as the gate electrode, a source electrode, a drain electrode, and a gate insulating film, wherein intensity of irradiated light is detected by a change in a value of current flowing between the source electrode and the drain electrode when the light is irradiated onto a depletion layer formed in the gate electrode; an optical sensor array, an optical sensor driving method, and an optical sensor array driving method are provided.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 11, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Atsushi Tanaka, Takeshi Hama
  • Patent number: 8669632
    Abstract: A solid-state imaging device and a method for manufacturing the same are provided. The solid-state imaging device includes a structure that provides a high sensitivity and high resolution without variations in spectral sensitivity and without halation of colors, and prevents light from penetrating into an adjacent pixel portion. A plurality of photodiodes are formed inside a semiconductor substrate. A wiring layer includes a laminated structure of an insulating film and a wire and is formed on the semiconductor substrate. A plurality of color filters are formed individually in a manner corresponding to the plurality of photodiodes above the wiring layer. A planarized film and a microlens are sequentially laminated on each of the color filters. In the solid-state imaging device, each of the color filters has an refraction index higher than that of the planarized film and has, in a Z-axis direction, an upper surface in a concave shape.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: March 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Tetsuya Nakamura, Motonari Katsuno, Masayuki Takase, Masao Kataoka
  • Patent number: 8669631
    Abstract: A solid state imaging device according to one embodiment of the present invention includes a substrate with a solid state imaging element, a first impurity layer, a plurality of external electrodes, and a translucent substrate. The first impurity layer is formed on a back surface side of the substrate, and forms a pn junction with the substrate. The plurality of external electrodes is formed on the back surface of the substrate and is electrically connected to the solid state imaging element. The translucent substrate is fixed to the substrate.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: March 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiteru Koseki
  • Patent number: 8659109
    Abstract: An image sensor including a plurality of pixels each including a charge collection region including an N-type region bounded by P-type regions and having an overlying P-type layer; and an insulated gate electrode positioned over the P-type layer and arranged to receive a gate voltage for conveying charges stored in the charge collection region through the P-type layer.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: February 25, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: François Roy
  • Patent number: 8659110
    Abstract: A single-junction photovoltaic cell includes a doped layer comprising a dopant diffused into a semiconductor substrate; a patterned conducting layer formed on the doped layer; a semiconductor layer comprising the semiconductor substrate located on the doped layer on a surface of the doped layer opposite the patterned conducting layer; and an ohmic contact layer formed on the semiconductor layer.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Devendra Sadana, Davood Shahrjerdi, Norma E. Sosa Cortes, Brent A. Wacaser
  • Publication number: 20140048689
    Abstract: Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 20, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Bedabrata PAIN, Thomas J. CUNNINGHAM
  • Patent number: 8653617
    Abstract: This invention provides a solid-state image sensing apparatus in which a sensor portion that performs photo-electric conversion and plural layers of wiring lines including a signal line for the sensor portion are formed on a semiconductor substrate; which includes an effective pixel portion configured such that light enters the sensor portion, and an optical black portion shielded so that the light does not enter the sensor portion; and which has a light-receiving surface on the back surface side of the semiconductor substrate. The optical black portion includes the sensor portion, a first light-shielding film formed closer to the back surface side of the semiconductor substrate than the sensor portion, and a second light-shielding film formed closer to the front surface side of the semiconductor substrate than the sensor portion.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: February 18, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Keiji Nagata
  • Patent number: 8643132
    Abstract: Embodiments of the invention describe providing high dynamic range imaging (HDRI or simply HDR) to an imaging pixel by coupling a floating diffusion node of the imaging pixel to a plurality of metal-oxide semiconductor (MOS) capacitance regions. It is understood that a MOS capacitance region only turns “on” (i.e., changes the overall capacitance of the floating diffusion node) when the voltage at the floating diffusion node (or a voltage difference between a gate node and the floating diffusion node) is greater than its threshold voltage; before the MOS capacitance region is “on” it does not contribute to the overall capacitance or conversion gain of the floating diffusion node. Each of the MOS capacitance regions will have different threshold voltages, thereby turning “on” at different illumination conditions. This increases the dynamic range of the imaging pixel, thereby providing HDR for the host imaging system.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: February 4, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai, Howard E. Rhodes
  • Patent number: 8610048
    Abstract: A method for producing a photosensitive integrated circuit including producing circuit control transistors, producing, above the control transistors, and between at least one upper electrode and at least one lower electrode, at least one photodiode, by amorphous silicon layers into which photons from incident electromagnetic radiation are absorbed, producing at least one passivation layer, between the lower electrode and the control transistors, and producing, between the control transistors and the external surface of the integrated circuit, a reflective layer capable of reflecting photons not absorbed by the amorphous silicon layers.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 17, 2013
    Assignee: STMicroelectronics S.A.
    Inventors: Jerome Alieu, Simon Guillaumet, Christophe Legendre, Hughes Leininger, Jean-Pierre Oddou, Marc Vincent
  • Patent number: 8603836
    Abstract: Disclosed is a transparent carbon nanotube (CNT) electrode using a conductive dispersant. The transparent CNT electrode comprises a transparent substrate and a CNT thin film formed on a surface the transparent substrate wherein the CNT thin film is formed of a CNT composition comprising CNTs and a doped dispersant. Further disclosed is a method for producing the transparent CNT electrode. The transparent CNT electrode exhibits excellent conductive properties, can be produced in an economical and simple manner by a room temperature wet process, and can be applied to flexible displays. The transparent CNT electrode can be used to fabricate a variety of devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays and touch screen panels, that are required to have both light transmission properties and conductive properties.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: December 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seon Mi Yoon, Jae Young Choi, Dong Kee Yi, Seong Jae Choi, Hyeon Jin Shin
  • Patent number: 8592934
    Abstract: On the front side of an n-type semiconductor substrate 5, p-type regions 7 are two-dimensionally arranged in an array. A high-concentration n-type region 9 and a p-type region 11 are disposed between the p-type regions 7 adjacent each other. The high-concentration n-type region 9 is formed by diffusing an n-type impurity from the front side of the substrate 5 so as to surround the p-type region 7 as seen from the front side. The p-type region 11 is formed by diffusing a p-type impurity from the front side of the substrate 5 so as to surround the p-type region 7 and high-concentration n-type region 9 as seen from the front side. Formed on the front side of the n-type semiconductor substrate 5 are an electrode 15 electrically connected to the p-type region 7 and an electrode 19 electrically connected to the high-concentration n-type region 9 and the p-type region 11.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: November 26, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Tatsumi Yamanaka
  • Patent number: 8574945
    Abstract: An embodiment of an array of Geiger-mode avalanche photodiodes, wherein each photodiode is formed by a body of semiconductor material, having a first conductivity type, housing a first cathode region, of the second conductivity type, and facing a surface of the body, an anode region, having the first conductivity type and a higher doping level than the body, extending inside the body, and facing the surface laterally to the first cathode region and at a distance therefrom, and an insulation region extending through the body and insulating an active area from the rest of the body, the active area housing the first cathode region and the anode region. The insulation region is formed by a mirror region of metal material, a channel-stopper region having the second conductivity type, surrounding the mirror region, and a coating region, of dielectric material, arranged between the mirror region and the channel-stopper region.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 5, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Delfo Nunziato Sanfilippo, Emilio Antonio Sciacca, Piero Giorgio Fallica, Salvatore Antonio Lombardo
  • Patent number: 8575661
    Abstract: A solid-state image pick-up device is provided which includes a semiconductor substrate main body which has an element forming layer and a gettering layer provided on an upper layer thereof; photoelectric conversion elements, each of which includes a first conductive type region, provided in the element forming layer; and a dielectric film which is provided on an upper layer of the gettering layer and which induces a second conductive type region in a surface of the gettering layer.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: November 5, 2013
    Assignee: Sony Corporation
    Inventor: Shin Iwabuchi
  • Patent number: 8569857
    Abstract: A bolometer has a semiconductor membrane having a single-crystalline portion, and spacers so as to keep the semiconductor membrane at a predetermined distance from an underlying substrate. The complementarily doped regions of the single-crystalline portion form a diode and the predetermined distance corresponds to a fourth of an infrared wavelength.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: October 29, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Piotr Kropelnicki, Marco Russ, Holger Vogt
  • Publication number: 20130277790
    Abstract: The presented principles describe an apparatus and method of making the same, the apparatus being a semiconductor circuit device, having shallow trench isolation features bounding an active area and a periphery area on a semiconductor substrate to electrically isolate structures in the active area from structures in the periphery area. The shallow trench isolation feature bounding the active area is shallower than the shallow trench isolation feature bounding the periphery area, with the periphery area shallow trench isolation structure being formed through two or more etching steps.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Yang Hung, Po-Zen Chen, Szu-Hung Yang, Chih-Cherng Jeng, Chih-Kang Chao, I-I Cheng
  • Patent number: 8552470
    Abstract: A photovoltaic cell is provided as a composite unit together with elements of an integrated circuit on a common substrate. In a described embodiment, connections are established between a multiple photovoltaic cell portion and a circuitry portion of an integrated structure to enable self-powering of the circuitry portion by the multiple photovoltaic cell portion.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: October 8, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Yuanning Chen, Thomas Patrick Conroy, Jeffrey DeBord, Nagarajan Sridhar
  • Publication number: 20130241024
    Abstract: A solid-state image pickup device 1 according to the present invention includes a semiconductor substrate 2 on which a pixel 20 composed of a photodiode 3 and a transistor is formed. The transistor comprising the pixel 20 is formed on the surface of the semiconductor substrate, a pn junction portion formed between high concentration regions of the photodiode 3 is provided within the semiconductor substrate 2 and a part of the pn junction portion of the photodiode 3 is extended to a lower portion of the transistor formed on the surface of the semiconductor substrate 2. According to the present invention, there is provided a solid-state image pickup device in which a pixel size can be microminiaturized without lowering a saturated electric charge amount (Qs) and sensitivity.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 19, 2013
    Applicant: SONY CORPORATION
    Inventors: Takayuki Ezaki, Teruo Hirayama
  • Patent number: 8536625
    Abstract: An electronic image sensor includes a semiconductor substrate having a first surface configured for accepting illumination to a pixel array disposed in the substrate. An electrically-doped channel region for each pixel is disposed at a second substrate surface opposite the first substrate surface. The channel regions are for collecting photogenerated charge in the substrate. An electrically-doped channel stop region is at the second substrate surface between each channel region. An electrically-doped shutter buried layer, disposed in the substrate at a depth from the second substrate surface that is greater than that of the pixel channel regions, extends across the pixel array. An electrically-doped photogenerated-charge-extinguishment layer, at the first substrate surface, extends across the pixel array.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: September 17, 2013
    Assignee: Massachusetts Institute of Technology
    Inventor: Barry E. Burke
  • Patent number: 8519504
    Abstract: In an n-type semiconductor layer that contains gallium (Ga), contact resistance is to be suppressed at a low level. An n-side electrode is provided on a surface of the n-type semiconductor layer containing Ga. The electrode includes a metal layer having a Ga content of equal to or more than 1 at % and equal to or less than 25 at %. The metal layer is disposed in contact with the n-type semiconductor layer.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: August 27, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Kentaro Tada
  • Patent number: 8519455
    Abstract: A light signal transfer device comprises a substrate having a gate dielectric layer; a source and drain doped regions formed in the substrate; a gate formed on the gate dielectric layer; a carbon nano-tube material formed under the gate dielectric layer to act a channel; and a photo-diode doped region formed adjacent to one of the source and drain doped regions, wherein the areas of the channel and the photo-diode doped region are fixed, the carbon nano-tube material reducing area of the channel and increase photo reception area for the photo-diode doped region to improve performance of the light signal transfer device.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: August 27, 2013
    Inventor: Kuo-Ching Chiang
  • Publication number: 20130208267
    Abstract: Disclosed is a photoelectric conversion device which inhibits characteristic degradation caused by crystal defects, and an inspection method for crystal defects in photoelectric conversion devices. The photoelectric conversion device is provided with an active layer, and a deactivator contained in the active layer.
    Type: Application
    Filed: March 14, 2011
    Publication date: August 15, 2013
    Inventors: Akihiko Yoshikawa, Yoshihiro Ishitani, Kazuhide Kusakabe
  • Publication number: 20130200268
    Abstract: Apparatus are provided for monitoring a condition of a surface based on a measurement of a property of the surface using a sensor. In an example, the property is performed using an apparatus disposed above the tissue, where the apparatus includes at least one coil structure formed from a conductive material, at least one other component, and at least one cross-link structure physically coupling a portion of the at least one coil structure to a portion of the at least one other component, the at least one cross-link structure being formed from a flexible material. The at least one other component can be a sensor component or a processor unit.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 8, 2013
    Applicant: MC10, Inc.
    Inventor: MC10, Inc.
  • Patent number: 8501519
    Abstract: A method of production of a CIS-based thin film solar cell comprises the steps of forming an alkali control layer on a high strain point glass substrate, forming a back surface electrode layer on the alkali control layer, forming a CIS-based light absorption layer on the back surface electrode layer, and forming an n-type transparent conductive film on the CIS-based light absorption layer, wherein the alkali control layer is formed to a thickness which allows heat diffusion of the alkali metal which is contained in the high strain point glass substrate to the CIS-based light absorption layer and, furthermore, the CIS-based light absorption layer has an alkali metal added to it from the outside in addition to heat diffusion from the high strain point glass substrate.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: August 6, 2013
    Assignee: Showa Shell Sekiyu K.K.
    Inventors: Hideki Hakuma, Tetsuya Aramoto, Yoshiyuki Chiba, Yoshiaki Tanaka
  • Patent number: 8497503
    Abstract: A method and apparatus for depositing a film on a substrate includes subjecting material to an energy beam.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: July 30, 2013
    Assignee: First Solar, Inc.
    Inventor: Peter V. Meyers
  • Patent number: 8492253
    Abstract: Methods of forming contacts for back-contact solar cells are described. In one embodiment, a method includes forming a thin dielectric layer on a substrate, forming a polysilicon layer on the thin dielectric layer, forming and patterning a solid-state p-type dopant source on the polysilicon layer, forming an n-type dopant source layer over exposed regions of the polysilicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped polysilicon regions among a plurality of p-type doped polysilicon regions.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: July 23, 2013
    Assignee: SunPower Corporation
    Inventor: Jane Manning
  • Publication number: 20130181315
    Abstract: A cell for a silicon-based photoelectric multiplier may comprise a first layer of a first conductivity type and a second layer of a second conductivity type formed on the first layer. The first layer and the second layer may form a first p-n junction. The cell may be processed by an ion implantation act wherein parameters of the ion implantation are selected such that due to an implantation-induced damage of the crystal lattice, an absorption length of infrared light of a wavelength in a range of ?800 nm to 1000 nm is decreased.
    Type: Application
    Filed: October 23, 2012
    Publication date: July 18, 2013
    Applicant: Max-Planck-Gesellschaft zur Ftirderung der Wissenschaften e. V.
    Inventors: Max-Planck-Gesellschaft zur Ftirderung der, Ljudmila Aseeva
  • Patent number: 8487350
    Abstract: An image sensor pixel includes a semiconductor layer, a photosensitive region to accumulate photo-generated charge, a floating node, a trench, and an entrenched transfer gate. The photosensitive region and the trench are disposed within the semiconductor layer. The trench extends into the semiconductor layer between the photosensitive region and the floating node and the entrenched transfer gate is disposed within the trench to control transfer of the photo-generated charge from the photosensitive region to the floating node.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 16, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hidetoshi Nozaki, Tiejun Dai
  • Publication number: 20130176836
    Abstract: A metallic ring is made of two metals, wherein one metal forms a major arcuate portion and the other a minor arcuate portion of the ring, thereby forming a thermocouple-type structure as a result of the two inter-metallic junctions. The metallic ring supports a surface plasmon whose energy is matched to the energy, i.e. wavelength, of an incident light beam so that the oscillating electromagnetic field of the light resonates with the plasmon. The resonating plasmon causes a temperature difference to arise between the two inter-metallic junctions in the ring. The different Seebeck coefficients of the two metals results in the temperature difference causing a net current to flow around the ring, which in turn generates a magnetic field. Such a thermoelectric metamaterial ring transforms high frequency optical energy into long duration magnetic radiation pulses in the terahertz range.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 11, 2013
    Applicant: University of Southampton
    Inventor: University of Southampton
  • Publication number: 20130175653
    Abstract: This description relates to a sensing product formed using a substrate with a plurality of epi-layers. At least a first epi-layer has a different composition than the composition of a second epi-layer. The sensing product optionally includes at least one radiation sensing element in the second epi-layer and optionally an interconnect structure over the second epi-layer. The sensing product is formed by removing the substrate and all epi-layers other than the second epi-layer. A light incident surface of the second epi-layer has a total thickness variation of less than about 0.15 ?m.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Chieh CHANG, Yu-Ku LIN, Ying-Lang WANG
  • Patent number: 8482040
    Abstract: A solid-state image capturing device includes: a substrate; a substrate voltage source which applies a first potential to the substrate during a light reception period and applies a second potential to the substrate during a non-light reception period; and a plurality of pixels which each includes a light receiver which is formed on a front surface of the substrate and generates signal charges in accordance with received light, a storage capacitor which is formed adjacent to the light receiver and accumulates and stores signal charges generated by the light receiver, dark-current suppressors which are formed in the light receiver and the storage capacitor, an electronic shutter adjusting layer which is formed in an area facing the light receiver in the substrate and distant from the storage capacitor and which adjusts potential distribution, and a floating diffusion portion to which the signal charges accumulated in the storage capacitor are transmitted.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: July 9, 2013
    Assignee: Sony Corporation
    Inventor: Hideo Kanbe
  • Patent number: 8476730
    Abstract: An embodiment of a Geiger-mode avalanche photodiode, having: a body made of semiconductor material of a first type of conductivity, provided with a first surface and a second surface and forming a cathode region; and an anode region of a second type of conductivity, extending inside the body on top of the cathode region and facing the first surface. The photodiode moreover has: a buried region of the second type of conductivity, extending inside the body and surrounding an internal region of the body, which extends underneath the anode region and includes the internal region and defines a vertical quenching resistor; a sinker region extending through the body starting from the first surface and in direct contact with the buried region; and a contact region made of conductive material, overlying the first surface and in direct contact with the sinker region.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: July 2, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Delfo Nunziato Sanfilippo, Massimo Cataldo Mazzillo, Piero Giorgio Fallica
  • Patent number: 8476699
    Abstract: A method for producing a semiconductor device includes a step of forming a conductor layer and a first semiconductor layer containing a donor impurity or an acceptor impurity on a first semiconductor substrate; a step of forming a second insulating layer so as to cover the first semiconductor layer; a step of thinning the first semiconductor substrate to a predetermined thickness; a step of forming, from the first semiconductor substrate, a pillar-shaped semiconductor having a pillar-shaped structure on the first semiconductor layer; a step of forming a first semiconductor region in the pillar-shaped semiconductor by diffusing the impurity from the first semiconductor layer; and a step of forming a pixel of a solid-state imaging device with the pillar-shaped semiconductor into which the impurity has been diffused.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: July 2, 2013
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: RE44482
    Abstract: A lock in pinned photodiode photodetector includes a plurality of output ports which are sequentially enabled. Each time when the output port is enabled is considered to be a different bin of time. A specified pattern is sent, and the output bins are investigated to look for that pattern. The time when the pattern is received indicates the time of flight A CMOS active pixel image sensor includes a plurality of pinned photodiode photodetectors that use a common output transistor. In one configuration, the charge from two or more pinned photodiodes may be binned together and applied to the gate of an output transistor.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: September 10, 2013
    Assignee: Round Rock Research, LLC
    Inventors: Vladimir Berezin, Alexander I. Krymski, Eric R. Fossum