Involving Nucleic Acid Patents (Class 435/6.1)
  • Patent number: 11862329
    Abstract: A pathogen detection and display system is configured to discover and display the location of substances of interest, particularly pathogens that can spread infection. The detection and display system can be used in healthcare facilities on surfaces, medical equipment and devices, patients, and staff, for example.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: January 2, 2024
    Assignee: Cardeya Corporation
    Inventors: Charles R. Sperry, Lawrence J. Pillote, Vincent A. Piucci, Dennis F. McNamara, Jr., James M. Wilson, III, Lisa Ruth Stowe, Brett M. Sitzlar, Barbara A. Piucci, David C. Chase
  • Patent number: 11859184
    Abstract: The present invention relates to a multi-conjugate of small interfering RNA (siRNA) and a preparing method of the same, more precisely a multi-conjugate of siRNA prepared by direct binding of double stranded sense/antisense siRNA monomers or indirect covalent bonding mediated by a cross-linking agent or a polymer, and a preparing method of the same. The preparing method of a siRNA multi-conjugate of the present invention is characterized by simple and efficient reaction and thereby the prepared siRNA multi-conjugate of the present invention has high molecular weight multiple times the conventional siRNA, so that it has high negative charge density, suggesting that it has excellent ionic interaction with a cationic gene carrier and high gene delivery efficiency.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: January 2, 2024
    Assignee: Kip Co., Ltd.
    Inventors: Tae Gwan Park, Hye Jung Mok, Soo Hyeon Lee
  • Patent number: 11857642
    Abstract: The present invention provides an isolated nucleic acid molecule comprising, or consisting of, the nucleic acid sequence of SEQ ID NO:1 or a nucleic acid sequence of at least 150 bp having at least 80% identity to said sequence of SEQ ID NO:1, wherein said isolated nucleic acid molecule specifically leads to the expression in rod photoreceptors of a gene when operatively linked to a nucleic acid sequence coding for said gene.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: January 2, 2024
    Assignee: Friedrich Miescher Institute for Biomedical Research
    Inventors: Dominik Hartl, Josephine Juettner, Arnaud Krebs, Botond Roska, Dirk Schuebeler
  • Patent number: 11859171
    Abstract: The present invention provides an approach to increase the effective read length of commercially available sequencing platforms to several kilobases and be broadly applied to obtain long sequence reads from mixed template populations. A method for generating extended sequence reads of long DNA molecules in a sample, comprising the steps of: assigning a specific barcode sequence to each template DNA molecule in a sample to obtain barcode-tagged molecules; amplifying the barcode-tagged molecules to obtain barcode-containing fragments; juxtaposing the barcode-containing fragments to random short segments of the original DNA template molecule during the process of generating a sequencing library to obtain demultiplexed reads; and assembling the demultiplexed reads to obtain extended sequence reads for each DNA template molecule, is disclosed.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: January 2, 2024
    Assignee: Agency for Science, Technology and Research
    Inventors: Stephen R. Quake, William F. Burkholder, Lewis Z. Hong
  • Patent number: 11855697
    Abstract: A system senses analytes through one or more sensors that detect or measure a physical characteristic. The one or more sensor generate a spectroscopic-data signal corresponding to the detection. An edge device communicatively couples the one or more sensors that communicatively couples a wide-area network coupling a cloud service. The edge device includes a data acquisition device that receives spectroscopic data signals from the one or more sensor and a processor that processes the spectroscopic-data signals to identify an analyte. The edge device also includes a transceiver that transmits data identifying the analytes to the cloud service.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: December 26, 2023
    Assignee: UT-Battelle, LLC
    Inventor: Ali Passian
  • Patent number: 11852578
    Abstract: To provide a technique capable of handling quantitative data in a spectrum type microparticle measurement device without causing deterioration of the SNR. The present technology provides a microparticle measurement spectrometer including a spectroscopic element that disperses light emitted from microparticles flowing through a flow path, and a photoelectric conversion array that has a plurality of light receiving elements having different detection wavelength ranges and converts optical information obtained by the light receiving elements into electrical information, in which the photoelectric conversion array has a uniform output of all channels when light with which the amount of light per unit wavelength becomes same is incident.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: December 26, 2023
    Assignee: SONY CORPORATION
    Inventors: Masaaki Hara, Tomoyuki Umetsu, Yoshiki Okamoto
  • Patent number: 11845937
    Abstract: Described are RNAi agents, compositions that include RNAi agents, and methods for inhibition of a double homeobox 4 (DUX4) gene. The DUX4 RNAi agents and RNAi agent conjugates disclosed herein inhibit the expression of a DUX4 gene. Pharmaceutical compositions that include one or more DUX4 RNAi agents, optionally with one or more additional therapeutics, are also described. Delivery of the described DUX4 RNAi agents to skeletal muscle cells in vivo, provides for inhibition of DUX4 gene expression and a reduction in DUX4 levels, which can provide a therapeutic benefit to subjects, including human subjects, suffering from certain skeletal muscle-related diseases or disorders including Facioscapulohumeral Muscular Dystrophy (FSHD).
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: December 19, 2023
    Assignee: Arrowhead Pharmaceuticals, Inc.
    Inventors: Zhi-Ming Ding, Jonathan Van Dyke, Xiaokai Li, Anthony Nicholas, Casi M. Schienebeck, Tao Pei, Zhao Xu, Teng Ai, Susan Phan, Susan Ramos-Hunter
  • Patent number: 11845983
    Abstract: Compositions, methods, and systems are provided for sample preparation techniques and sequencing of macromolecular constituents derived from a cell (i.e., a cell bead) in a multiplexed reaction. Using the compositions, systems, and methods disclosed herein, the association of the macromolecular constituents with the biological particle from which they are derived and the association of the cell bead with the cell bead sample from which they are derived is maintained.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: December 19, 2023
    Assignee: 10X GENOMICS, INC.
    Inventors: Zahra Kamila Belhocine, Andrew D. Price
  • Patent number: 11845986
    Abstract: This disclosure provides methods and compositions for removing one or more high abundance species from a plurality of nucleic acid molecules. In some embodiments, the methods and compositions can be used for normalizing nucleic acid libraries. In some embodiments, molecular labels are used in conjunction with the methods and compositions disclosed herein to improve sequencing efficiency.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: December 19, 2023
    Assignee: Becton, Dickinson and Company
    Inventors: Eleen Shum, Glenn Fu, Craig Betts
  • Patent number: 11845936
    Abstract: The present invention provides methods and compositions for stable genetic modification of cultured mammalian cells. The genetic modifications can be used to produce cultured mammalian cells for therapeutic or diagnostic purposes.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: December 19, 2023
    Assignee: DNA TWOPOINTO INC.
    Inventors: Jeremy Minshull, Maggie Lee
  • Patent number: 11834707
    Abstract: A nucleic acid amplification blocker for detecting a low-abundance mutation sequence and an application thereof in detecting a low-abundance mutation sequence are provided. The nucleic acid amplification blocker is an oligonucleotide modified by locked nucleic acid (LNA), and the matching region of the nucleic acid amplification blocker is located between amplified sequences. The nucleic acid amplification blocker is completely complementary to wild-type gene sequence, and contains at least one mismatch with mutant sequence. The nucleic acid amplification blocker has a great difference in affinity with mutant nucleic acid sequence/wild-type nucleic acid sequence, so as to achieve the purpose of highly selective amplification/enrichment of mutant sequence in samples. The nucleic acid amplification blocker has more significant detection effect on deletion mutation and insertion mutation.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 5, 2023
    Assignee: SHANGHAI MAG-GENE NANOTECH CO., LTD.
    Inventors: Hong Xu, Hao Yang, Gaolian Xu, Hongchen Gu
  • Patent number: 11827661
    Abstract: Compounds useful as fluorescent or colored dyes are disclosed. The compounds have the following structure (I): or a stereoisomer, tautomer or salt thereof, wherein R1, R2, R3, R4, R5, L1, L3, L4, L6, L7, L8, M1, M2, q, w and n are as defined herein. Methods associated with preparation and use of such compounds are also provided.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: November 28, 2023
    Assignee: Sony Group Corporation
    Inventors: C. Frederick Battrell, Kenneth Farber, John C. Kumer, Tracy Matray, Michael VanBrunt
  • Patent number: 11823799
    Abstract: The present invention provides a powerful tool to identify personalized therapeutic strategies. In particular, the invention provides methods for determining therapeutically targetable dominant signaling pathways in a cancer sample from a subject affected with a solid cancer, determining a treatment protocol for the subject, selecting a subject for a therapy, determining whether the subject is susceptible to benefit from a therapy, predicting clinical outcome of the subject, treating the subject and/or predicting the sensitivity of a solid cancer to a therapy.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: November 21, 2023
    Assignees: UNIVERSITE DE STRASBOURG, INSERM (INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE)
    Inventors: Dominique Bagnard, Aurore Fernandez, Laurent Jacob, Justine Fritz
  • Patent number: 11820985
    Abstract: This disclosure relates to novel modified oligonucleotides. Novel modified siRNA are also provided.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: November 21, 2023
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Anastasia Khvorova, Loïc Maurice René Jean Roux, Ken Yamada
  • Patent number: 11821109
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 21, 2023
    Assignees: President and Fellows of Harvard College, United Kingdom Research and Innovation
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Patent number: 11821030
    Abstract: Methods for multiplex amplification of a plurality of targets of distinct sequence from a complex mixture are disclosed. In one aspect targets are circularized using a single circularization probe that is complementary to two regions in the target that flank a region to be amplified. The targets may hybridize to the circularization probe so that 5? or 3? flaps are generated and methods for removing flaps and circularizing the resulting product are disclosed. In another aspect targets are hybridized to dU probes so that 5? and 3? flaps are generated. The flaps are cleaved using 5? or 3? flap endonucleases or 3? to 5? exonucleases. The target sequences are then ligated to common primers, the dU probes digested and the ligated targets amplified.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: November 21, 2023
    Assignee: AFFYMETRIX, INC.
    Inventors: Jianbiao Zheng, Li Weng, Malek Faham
  • Patent number: 11816753
    Abstract: Systems and methods are provided for provided for automatic evaluation of a human embryo. An image of the embryo is obtained and provided to a neural network to generate a plurality of values representing the morphology of the embryo. The plurality of values representing the morphology of the embryo are evaluated at an expert system to provide an output class representing one of a current quality of the embryo, a future quality of the embryo, a likelihood that implantation of the embryo will be successful, and a likelihood that implantation of the embryo will result in a live birth.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: November 14, 2023
    Assignees: THE BRIGHAM AND WOMEN'S HOSPITAL, INC., THE GENERAL HOSPITAL CORPORATION
    Inventors: Hadi Shafiee, Charles Bormann, Manoj Kumar Kanakasabapathy, Prudhvi Thirumalaraju
  • Patent number: 11813604
    Abstract: Disclosed is a biogel nanosensor for detection of an analyte that includes an acryloyl or methacryloyl modified hydrogel and nucleic acid amplification reagents in picoliter or nanoliter volume in the form of microarray. Also disclosed are methods of making the disclosed biogel nanosensor, and methods of using the biogel nanosensors.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: November 14, 2023
    Assignees: Trustees of Boston University, Fraunhofer USA, Inc., FRAUNHOFER-Gesellschaft zur Foerderung der angewandten Forschung e. V.
    Inventors: Christine McBeth, Kirsten Borchers, Achim Weber, Daniel Zontar
  • Patent number: 11808755
    Abstract: The present disclosure relates to a device, system and method for sensing functional motions of a single protein molecule via direct attachment of one or more electrodes to the molecule. The present disclosure also relates to an array, a system comprising an array and method for sequencing a biopolymer using an array.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: November 7, 2023
    Assignee: RECOGNITION ANALYTIX, INC.
    Inventors: Stuart Lindsay, Peiming Zhang
  • Patent number: 11806419
    Abstract: Nucleic acid aptamers having a high binding affinity and specificity for malodorous molecules and the use of such aptamers to reduce the intensity of the undesirable smells in personal care compositions.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: November 7, 2023
    Assignee: The Procter & Gamble Company
    Inventors: Juan Esteban Velasquez, Amy Violet Trejo, Gregory Allen Penner, Stevan David Jones
  • Patent number: 11802311
    Abstract: This disclosure provides methods and compositions for analyzing nucleic acids such as DNA and RNA, and including determination of absolute numbers of such nucleic acids and/or detection and localization of lesions or other modifications on such nucleic acids.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: October 31, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Bo Cao, Peter C. Dedon, Jennifer F. Hu, Michael S. DeMott
  • Patent number: 11795500
    Abstract: The present disclosure relates to methods of identifying RNA targets of RNA binding proteins. In aspects, the disclosure relates to a method of identifying RNA molecules bound by RNA binding proteins. Some embodiments of the present disclosure relate to a method that can definitively identify direct RNA-target interactions with targeted proteins without the requirement for immunoprecipitation or gel extraction. In some embodiments, the method may include combining multiple antibodies in the same sample.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: October 24, 2023
    Assignee: Eclipse Bioinnovations, Inc.
    Inventors: Daniel A. Lorenz, Karen B. Chapman
  • Patent number: 11788132
    Abstract: Techniques for measuring sequences of nucleic acids are provided. Time-based measurements (e.g., forming a histogram) particular to a given sequencing cell can be used to generate a tailored model. The model can include probability functions, each corresponding to different states (e.g., different states of a nanopore). Such probability functions can be fit to a histogram of measurements obtained for that cell. The probability functions can be updated over a sequencing run of the nucleic acid so that drifts in physical properties of the sequencing cell can be compensated. A hidden Markov model can use such probability functions as emission probabilities for determining the most likely nucleotide states over time. For sequencing cells involving a polymerase, a 2-state classification between bound and unbound states of the polymerase can be performed. The bound regions can be further analyzed by a second classifier to distinguish between states corresponding to different bound nucleotides.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: October 17, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: John Mannion, Morgan Mager
  • Patent number: 11788121
    Abstract: Compositions and methods, systems, and kits for detecting and quantifying variations in numbers of molecules, particularly variations in gene dosage, e.g., due to gene duplication, or to variations from the normal euploid complement of chromosomes, e.g., trisomy of one or more chromosomes that are normally found in diploid pairs, without digital sequencing.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: October 17, 2023
    Assignee: Enumera Molecular, Inc.
    Inventors: Matthew Sekedat, Jeffrey Buis, Ronald David Beaubien, Sharat Singh, Jeff Perry
  • Patent number: 11788124
    Abstract: The present invention relates to detection of nucleic acids and provides a composition comprising a Signal Generating Complex, wherein the composition comprises: (A) a pair of target probes (TPs), wherein a first TP of the pair of TPs comprises a nucleic acid sequence comprising two segments; (B) a pair of base PPAs comprising the first and second base PPAs, wherein the first base PPA comprises a nucleic acid sequence comprising three segments; (C) a set of extension PPAs comprising the first and second extension PPAs, wherein the first extension PPA comprises a nucleic acid sequence comprising two segments; (D) a plurality of pre-amplifiers (PAs), wherein the PAs comprise a nucleic acid sequence comprising three segments; (E) a plurality of amplifiers (AMPs), wherein the AMPs comprise a nucleic acid sequence comprising two segments; and (F) a plurality of label probes (LPs), wherein the LPs comprise a nucleic acid sequence comprising two segments.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 17, 2023
    Assignee: ADVANCED CELL DIAGNOSTICS, INC.
    Inventors: Yuling Luo, Xiao-Jun Ma, Steve Chen, Nan Su, Emerald Doolittle, Bingqing Zhang, Xiaoming Wang, Xingyong Wu, Xiao Yan Pimentel, Helen Jarnagin
  • Patent number: 11789014
    Abstract: The invention relates to a method of determining the presence or absence of a target analyte in a sample. The method comprises immobilising any target analyte present in the sample on a surface; contacting the surface with: (i) a first detection agent that binds specifically to the target analyte; and (ii) a reporter polynucleotide, wherein the reporter polynucleotide is bound to, or binds to, the first detection agent; and contacting a transmembrane pore with any reporter polynucleotide that has been immobilised on the surface, wherein the reporter polynucleotide is immobilised on the surface by binding of the first agent to the target analyte, and using the transmembrane pore to detect the reporter polynucleotide, thereby determining the presence or absence of the target analyte in the sample.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: October 17, 2023
    Assignee: Oxford Nanopore Technologies PLC
    Inventor: Daniel George Fordham
  • Patent number: 11781177
    Abstract: Compositions comprising covalently modified and mutated biotin-binding proteins, particularly biotin-binding proteins having a negative charge at physiological pH, are provided. Methods of producing such proteins are also provided, as are methods of immobilizing, sequencing, and making nucleic acids employing such proteins.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: October 10, 2023
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Satwik Kamtekar, Lubomir Sebo, Leewin Chern, Thomas Linsky, Jeremiah Hanes, Erik Miller, Ying Yang, Stephen Yue
  • Patent number: 11781181
    Abstract: The present invention provides a reciprocal-flow-type nucleic acid amplification device comprising: heaters capable of forming a denaturation temperature zone and an extension/annealing temperature zone; a fluorescence detector capable of detecting movement of a sample solution between the two temperature zones; a pair of liquid delivery mechanisms that allow the sample solution to move between the two temperature zones and that are configured to be open to atmospheric pressure when liquid delivery stops; a substrate on which the chip for nucleic acid amplification according to claim 2 can be placed; and a control mechanism that controls driving of each liquid delivery mechanism by receiving an electrical signal from the fluorescence detector relating to movement of the sample solution from the control mechanism; the device being capable of performing real-time PCR by measuring fluorescence intensity for each thermal cycle.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: October 10, 2023
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KYORIN PHARMACEUTICAL CO., LTD.
    Inventors: Hidenori Nagai, Shunsuke Furutani, Yoshihisa Hagihara, Yusuke Fuchiwaki
  • Patent number: 11781184
    Abstract: The invention relates to methods for pairwise sequencing of a double-stranded polynucleotide template, which permit the sequential determination of nucleotide sequences in two distinct and separate regions on complementary strands of the double-stranded polynucleotide template. The two regions for sequence determination may or may not be complementary to each other.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: October 10, 2023
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventor: Geoffrey Paul Smith
  • Patent number: 11781126
    Abstract: Proteases are enzymes which hydrolyze protein enzymes, eliminating their activity. The present invention exploits the hydrolyzing activity of proteases including proteinase K, endoproteinase LysC and/or trypsin to control the activity of restriction enzymes and/or eliminate or reduce production of unwanted DNA or RNA fragments (known as star activity).
    Type: Grant
    Filed: November 12, 2022
    Date of Patent: October 10, 2023
    Assignee: ABclonal Science, Inc.
    Inventors: Zhenyu Zhu, Dapeng Sun, Aine Quimby, Michaela Shottes
  • Patent number: 11774366
    Abstract: A Surface-Enhanced Raman Spectroscopy (SERS) device to perform accurate label-free long-read DNA sequencing. A Raman sensor has a hot spot defined by plasmonic nanostructures and excited by at least one laser. An immobilized DNA polymerase can be used to pull a DNA template strand to be sequenced through the hot spot.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: October 3, 2023
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Gemma Mendonsa, Eric K. Wadleigh, Vivek Krishnamurthy, Riyan A. Mendonsa, Martin G. Blaber, Krishnan Subramanian
  • Patent number: 11773438
    Abstract: Some embodiments of the present application relate to novel modified nucleotide linkers for increasing the efficiency of nucleotide incorporation in Sequencing by Synthesis applications. Methods of preparing these modified nucleotide linkers are also provided herewith.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: October 3, 2023
    Assignee: Illumina Cambridge Limited
    Inventors: Xiaolin Wu, Xiaohai Liu
  • Patent number: 11773410
    Abstract: The disclosure in some aspects relates to methods and compositions for repairing mutations (e.g., compound heterozygous mutations) that are widely found in patients having certain diseases (e.g., monogenic recessive diseases). In some aspects, the disclosure provides a method for targeted allelic exchange using recombinant gene editing complex.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 3, 2023
    Assignee: University of Massachusetts
    Inventors: Guangping Gao, Dan Wang
  • Patent number: 11773393
    Abstract: The present disclosure provides methods of treating subjects having a liver disease, and methods of identifying subjects having an increased risk of developing liver disease.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: October 3, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Niek Verweij, Luca Andrea Lotta, Aris Baras, Mary Haas, Jonas Nielsen, Olukayode Sosina, Adam Locke
  • Patent number: 11767568
    Abstract: The invention provides a transgenic Glycine max event MON87751, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON87751. The invention also provides polynucleotides specific for event MON87751, plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides for event MON87751. The invention also provides methods related to event MON87751.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: September 26, 2023
    Assignee: MONSANTO TECHNOLOGY LLC
    Inventors: Kim A. Beazley, Wen C. Burns, Robert H. Cole, II, Ted C. MacRae, John A. Miklos, Lisa G. Ruschke, Kairong Tian, Liping Wei, Kunsheng Wu
  • Patent number: 11766015
    Abstract: A novel maize variety designated X13R074 and seed, plants and plant parts thereof are produced by crossing inbred maize varieties. Methods for producing a maize plant by crossing hybrid maize variety X13R074 with another maize plant are disclosed. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X13R074 through backcrossing or genetic transformation, and to the maize seed, plant and plant part produced thereby are described. Maize variety X13R074, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X13R074 are provided. Methods for producing maize varieties derived from maize variety X13R074 and methods of using maize variety X13R074 are disclosed.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: September 26, 2023
    Inventors: Michael Phillip Jines, Leah Viesselmann Stirling
  • Patent number: 11760774
    Abstract: Novel compositions and methods for engineering wireframe architectures and scaffolds of increasing complexity by creating gridiron-like DNA structures (FIG. 1). A series of four-arm junctions are used as vertices within a network of double-helical DNA fragments. Deliberate distortion of the junctions from their most relaxed conformations ensures that a scaffold strand can traverse through individual vertices in multiple directions. DNA gridirons, ranging from two-dimensional arrays with reconfigurability to multilayer and three-dimensional structures and curved objects, can be assembled according the methods presented herein.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: September 19, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Dongran Han, Hao Yan
  • Patent number: 11759476
    Abstract: The present disclosure provides methods of treating a subject having metabolic disorders and/or cardiovascular diseases, methods of identifying subjects having an increased risk of developing a metabolic disorder and/or a cardiovascular disease, and methods of detecting human Inhibin Subunit Beta E variant nucleic acid molecules and variant polypeptides.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: September 19, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Luca Andrea Lotta, Parsa Akbari, Olukayode Sosina, Manuel Allen Revez Ferreira, Aris Baras
  • Patent number: 11761033
    Abstract: The present invention relates to a kit and a method of linear amplification of a least one nucleic acid target in a sample, said method comprising: (a) contacting each target in the sample with a nucleic acid polymerase and a primer comprising a component preventing copying of the primer by the nucleic acid polymerase; and at least one nuclease blocking nucleotide; (b) generating a primer extension product; (c) preventing priming by the 3?-end of the primer extension product, and (d) repeating steps b) and c) at least once.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: September 19, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Brian Christopher Godwin
  • Patent number: 11760998
    Abstract: The invention provides compositions and methods for high-efficiency genome editing. In some aspects, the invention provides retron-guide RNA cassettes and vectors comprising the cassettes. Also provided are host cells that have been transformed with the vectors. In other aspects, the invention provides retron donor DNA-guide molecules. In some other aspects, methods for genome editing and the screening of genetic loci are provided. In further aspects, methods and compositions are provided for the prevention or treatment of genetic diseases. Kits for genome editing and screening are also provided.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: September 19, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Zachery Smith, Hunter Fraser
  • Patent number: 11753676
    Abstract: This invention relates to imaging, such as by expansion microscopy, labelling, and analyzing biological samples, such as cells and tissues, as well as reagents and kits for doing so.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: September 12, 2023
    Assignee: EXPANSION TECHNOLOGIES
    Inventor: Mahender Babu Dewal
  • Patent number: 11753686
    Abstract: Disclosed herein are methods for improving detection and monitoring of human diseases. The methods can be used to provide spatial and/or developmental localization of the source of each differential mutation within the body. The methods can also be used to generate a mutation map of a subject. And the mutation map can be used to monitoring state(s) of health of one or more tissues of a subject.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: September 12, 2023
    Assignee: Personalis, Inc.
    Inventor: John West
  • Patent number: 11753642
    Abstract: The invention relates to nucleic acid products that interfere with complement component C3 gene expression or inhibit its expression. The nucleic acids are preferably for use as treatment, prevention or reduction of risk of suffering from complement component C3 associated diseases, disorders or syndromes, particularly C3 Glomerulopathy (C3G), Paroxysmal Nocturnal Hemoglobinuria (PNH), atypical Hemolytic Uremic Syndrome (aHUS), Lupus nephritis, IgA nephropathy (IgA N), Cold Agglutinin Disease (CAD), Myasthenia gravis (MG), and Primary Membranous Nephropathy.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: September 12, 2023
    Assignee: SILENCE THERAPEUTICS GMBH
    Inventors: Verena Aumiller, Lucas Bethge, Judith Hauptmann, Marie Wikström Lindholm, Adrien Weingärtner
  • Patent number: 11739323
    Abstract: The invention includes compositions and methods useful for the diagnosis and treatment of head or brain injury in a subject in need thereof, based upon the expression level of at least one miRNA that is associated with head or brain injury.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: August 29, 2023
    Assignee: Temple University-Of The Commonwealth System of Higher Education
    Inventors: Matthew B. Hudson, Dianne Langford, John Jeka, Ryan Tierney
  • Patent number: 11737411
    Abstract: A novel maize variety designated 1PPUL34 and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety 1PPUL34 with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into 1PPUL34 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety 1PPUL34 or a locus conversion of 1PPUL34 with another maize variety.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: August 29, 2023
    Inventors: Johann Fangl, Gustavo Marcelo Garcia
  • Patent number: 11739379
    Abstract: The invention provides a method of detecting a target polynucleotide in a sample comprising: (a) contacting the sample with a guide polynucleotide that binds to a sequence in the target polynucleotide and a polynucleotide-guided effector protein, wherein the guide polynucleotide and polynucleotide-guided effector protein form a complex with any target polynucleotide present in the sample; (b) contacting the sample with a membrane comprising a transmembrane pore; (c) applying a potential to the membrane; and (d) monitoring for the presence or absence of an effect resulting from the interaction of the complex with the transmembrane pore to determine the presence or absence of the complex, thereby detecting the target polynucleotide in the sample.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: August 29, 2023
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Andrew John Heron, James Edward Graham, Richard Alexander Gutierrez, Rebecca Victoria Bowen, James White, Clive Gavin Brown, Daniel George Fordham
  • Patent number: 11739302
    Abstract: An engineered vaccinia virus, a pharmaceutical composition containing the same, and methods for use in treating a subject in need using the same are provided. The engineered vaccinia virus includes a mutated viral sequence and a heterologous sequence. The mutated viral sequence is used for selective replication in tumor cells and/or activation of immune cells. The heterologous sequence encodes an immune co-stimulatory pathway activating molecule, immunomodulator gene, a truncated viral envelope gene, and/or a tumor suppressor. The heterologous sequence is stably incorporated into the genome of the engineered vaccinia virus. The pharmaceutical composition includes an effective amount of the engineered vaccinia virus and a pharmaceutical acceptable vehicle. The methods for use in treating the subject in need include administering the engineered vaccinia virus to the subject.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: August 29, 2023
    Assignee: Shenzhen Hua Yao Kang Ming Biopharmaceutical Co., Ltd.
    Inventor: Ming Yuan
  • Patent number: 11725230
    Abstract: The present disclosure provides methods for preparing a target mutant nucleic acid for subsequent enrichment relative to a wild type nucleic acid using nucleases that have a substantially higher activity on double stranded DNA versus single stranded DNA or RNA. The present disclosure also includes methods for enriching a target mutant nucleic acid and for preparing unmethylated/methylated nucleic acids of interest for subsequent enrichment.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: August 15, 2023
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Gerassimos Makrigiorgos, Chen Song
  • Patent number: 11725203
    Abstract: Provided are methods and compositions for negatively and positively selecting for different size nucleic acid (e.g., DNA or RNA) fragments on borosilicate glass fiber membranes, silica and metal oxide surfaces such that only those fragments falling within a desired size range are obtained.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: August 15, 2023
    Assignee: QIAGEN Sciences, LLC
    Inventors: Vince Moroney, Eddie Adams, Mark Brolaski, Ingemar Pedron
  • Patent number: 11725240
    Abstract: The present invention relates functional ligands to target molecules, particularly to functional nucleic acids and modifications thereof, and to methods for simultaneously generating, for example, numerous different functional biomolecules, particularly to methods for generating numerous different functional nucleic acids against multiple target molecules simultaneously. The present invention further relates to functional ligands which bind with affinity to target molecules, such as opioids and opioid derivatives.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: August 15, 2023
    Assignee: BASE PAIR BIOTECHNOLOGIES, INC.
    Inventors: Jasmine Kaur, Rafal Drabek, George W. Jackson, Robert Batchelor, Alexander Chiu