Involving Nucleic Acid Patents (Class 435/6.1)
  • Patent number: 11718848
    Abstract: A depleted sequencing library can be prepared by providing a composition comprising a heterogeneous mixture of linear nucleic acids having a first terminus and a second terminus. A first subset of target nucleic acids and a second subset of non-target nucleic acids can include a first adaptor region at the first terminus and a second adaptor region at the second terminus. A third subset of the target nucleic acids and a fourth subset of the non-target nucleic acids include the second adaptor region at the first terminus and at the second terminus. Removable blocker oligonucleotides can be added to the composition, non-target nucleic acids can be removed from the composition by sequence capture to bait oligonucleotides, and the composition can be treated to reduce a quantity of free blocker oligonucleotides that are not annealed to an adaptor sequence or to a sequence substantially complementary to an adaptor sequence.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: August 8, 2023
    Assignee: Color Health, Inc.
    Inventors: David Lee, Justin Lock
  • Patent number: 11713461
    Abstract: The present disclosure provides methods of treating patients having decreased bone mineral density, methods of identifying subjects having increased risk of developing decreased bone mineral density, methods of detecting human Zinc And Ring Finger 3 (ZNRF3) variant nucleic acid molecules and variant polypeptides, and ZNRF3 variant nucleic acid molecules and variant polypeptides.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: August 1, 2023
    Assignees: Regeneran Pharmaceuticals, Inc., University of Maryland, Baltimore
    Inventors: Da-Wei Gong, Nehal Gosalia, Alan Shuldiner, Cristopher Van Hout, James Perry
  • Patent number: 11715549
    Abstract: Methods of treating a disease by leveraging positive and negative correlations between tRNA-derived fragments (tRF) and messenger RNA (mRNA) wherein said correlations can be used to establish a level of granularity that is specific to a disease of interest wherein said disease-specific positive and negative correlations can allow a level of therapeutic intervention that will be unprecedented because it will have been informed by three dimensions: at least one mRNA of interest; at least one tRF that are positively/negatively correlated with it; and, the identity of the disease in which one wishes to modulate the abundance of the at least one mRNA of interest.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: August 1, 2023
    Assignee: THOMAS JEFFERSON UNIVERSITY
    Inventors: Isidore Rigoutsos, Aristeidis G. Telonis
  • Patent number: 11713350
    Abstract: The present invention relates to a medicine for treating disorders of glucose and/or lipid metabolism. This invention demonstrates a new therapeutic target for treatment of glucose and/or lipid metabolic disorders. The invention further provides a method of treating glucose and/or lipid metabolic disorders, administering to a subject comprising a Nogo-B inhibitor, thereby treating the glucose and/or lipid metabolic disorders.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: August 1, 2023
    Assignee: Hefei University of Technology
    Inventors: Jihong Han, Yajun Duan, Shuang Zhang, Xiaoxiao Yang, Yuanli Chen
  • Patent number: 11713483
    Abstract: Provided herein are products and methods for detecting analytes using polymers that bind to such analytes and thereby undergo a conformational change or contribute to a newly formed complex.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: August 1, 2023
    Assignee: Children's Medical Center Corporation
    Inventors: Wesley Philip Wong, Clinton H. Hansen
  • Patent number: 11713482
    Abstract: Disclosed herein are methods, devices and compositions comprising nucleic acid captor molecules with a stem region and a loop region for detecting target nucleic acids.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: August 1, 2023
    Assignee: GENECAPTURE, INC.
    Inventors: Paula M. Koelle, Krishnan Chittur, Valentin Korman, Zachary McGee
  • Patent number: 11713487
    Abstract: In the field of transplant rejection, identified are SNPs wherein mismatches in variants present in a recipient and donor for such SNPs are predictive of transplant outcome, wherein the SNPs represent non-HLA loci newly implicated in rejection. By the invention, transplant outcomes such as elevated risk of antibody mediated rejection, elevated risk of T-cell mediated rejection, or low risk of rejection can be predicted by analyzing mismatches between donor and recipient for the enumerated SNPs. Certain SNPs enumerated are predictive of kidney transplant outcome. The compatibility of prospective donors can be assessed for a recipient, allowing for optimized donor-recipient pairing.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: August 1, 2023
    Assignee: The Regents of the University of California
    Inventors: Minnie Sarwal, Marina Sirota, Silvia San Juan Pineda
  • Patent number: 11707036
    Abstract: A novel maize variety designated PH42SG and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety PH42SG with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH42SG through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety PH42SG or a locus conversion of PH42SG with another maize variety.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: July 25, 2023
    Inventor: Stephen Joseph Szalma
  • Patent number: 11708607
    Abstract: Improved solid supports and methods for analyzing target nucleotide sequences are provided herein. Certain improvements are directed to efficiently preparing nucleic acids that comprise nucleotide sequences identical to or substantially identical to one or more target nucleotide sequences, or complement thereof. The prepared nucleic acids include a reference sequence that facilitates sequence analysis. The solid supports and methods provided herein minimize the number of steps required by published sequence analysis methodologies, and thereby offer improved sequence analysis efficiency.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: July 25, 2023
    Assignee: Sequenom, Inc.
    Inventor: Charles R. Cantor
  • Patent number: 11708594
    Abstract: A photocaged DNA nano-tweezer and methods of using said photocaged DNA nano-tweezer are described. In particular, provided herein is a DNA nano-tweezer comprising a hairpin with a single-stranded loop that comprises a first arm and a second arm; and a trigger strand complementary to the single-stranded loop and comprising at least one photocaged residue with a protecting group.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: July 25, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Nicholas Stephanopoulos, Minghui Liu
  • Patent number: 11702702
    Abstract: Disclosed are systems and methods for detecting genetic alterations comprising androgen receptor gene splice variants (AR-Vs), mutations, indel, copy number changes, fusion and combination thereof, in a biofluid sample from the patient. The systems and methods are similarly applicable to the detection of gene alterations comprising gene splicing variants, mutations, indel, copy number changes, fusion and combination thereof of other genes of interest. The streamlined methods improve the consistency and simplicity of non-invasive detections of biomarkers.
    Type: Grant
    Filed: April 16, 2017
    Date of Patent: July 18, 2023
    Assignee: Predicine, Inc.
    Inventors: Shidong Jia, Pan Du, Xiaohong Wang
  • Patent number: 11702699
    Abstract: The present invention relates to the detection of a nucleotide variation on a target nucleic acid sequence using an amplification blocker and a VD-PTOCE (Variation Detection by PTO Cleavage and Extension) assay. The present invention is significantly effective in the detection of a minority mutation in an excess of wild-type DNA.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: July 18, 2023
    Assignee: SEEGENE, INC.
    Inventors: Jong Yoon Chun, Young Jo Lee
  • Patent number: 11702706
    Abstract: The disclosure provides for methods, compositions, and kits for multiplex nucleic acid analysis of single cells. The methods, compositions and systems may be used for massively parallel single cell sequencing. The methods, compositions and systems may be used to analyze thousands of cells concurrently. The thousands of cells may comprise a mixed population of cells (e.g., cells of different types or subtypes, different sizes).
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: July 18, 2023
    Assignee: Becton, Dickinson and Company
    Inventors: Christina Fan, Stephen P. A. Fodor, Glenn Fu, Geoffrey Richard Facer, Julie Wilhelmy
  • Patent number: 11699094
    Abstract: Methods, systems, and devices for automated feature selection and model generation are described. A device (e.g., a server, user device, database, etc.) may perform model generation for an underlying dataset and a specified outcome variable. The device may determine relevance measurements (e.g., stump R-squared values) for a set of identified features of the dataset and can reduce the set of features based on these relevance measurements (e.g., according to a double-box procedure). Using this reduced set of features, the device may perform a least absolute shrinkage and selection operator (LASSO) regression procedure to sort the features. The device may then determine a set of nested linear models—where each successive model of the set includes an additional feature of the sorted features—and may select a “best” linear model for model generation based on this set of models and a model quality criterion (e.g., an Akaike information criterion (AIC)).
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: July 11, 2023
    Assignee: Salesforce, Inc.
    Inventor: Paul Walter Hubenig
  • Patent number: 11697834
    Abstract: A method is provided for treating a recipient with a biological product obtained from at least one donor that may be the same as, or different from, the recipient. The method includes identifying a targeted level of gene expression of a first gene in a biological product to be transferred from at least one donor to a recipient; treating the at least one donor to achieve the targeted level of gene expression of the first gene in the biological product; and transferring the biological product from the at least one donor to the recipient.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: July 11, 2023
    Assignee: Maxwell Biosciences, Inc.
    Inventors: Annelise E. Barron, David Haase, Joshua McClure
  • Patent number: 11692224
    Abstract: This disclosure provides methods for determining relative abundance of one or more non-host species in a sample from a host. Also provided are methods involving addition of known concentrations of synthetic nucleic acids to a sample and performing sequencing assays to identify non-host species such as pathogens. Also provided are methods of tracking samples, tracking reagents, and tracking diversity loss in sequencing assays.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: July 4, 2023
    Assignee: Karius, Inc.
    Inventors: Fred C. Christians, Igor D. Vilfan, Michael Kertesz, Timothy A. Blauwkamp, Shivkumar Venkatasubrahmanyam, Michael Rosen, Rene Sit
  • Patent number: 11680269
    Abstract: Provided herein are highly sensitive compositions and methods for detection of at least one specific nucleic acid molecule in a sample. The presence of a specific nucleic acid provides a positive indicator of a pathogenic agent, contaminant, non-canonical bases, and/or wild-type or mutated genes in a sample or a cell. Applications for which the compositions and methods are particularly well suited include point-of-care disease diagnosis or cellular RNA imaging.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: June 20, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexander Green, Fan Hong
  • Patent number: 11680295
    Abstract: Disclosed are arrays of nucleic acid molecules, kits, methods of genotyping and marker assisted bovine breeding methods using SNPs on genes of the bovine interferon tau signaling pathway for improved bovine fertilization rate, or embryo survival, or both.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: June 20, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventor: Hasan Khatib
  • Patent number: 11674882
    Abstract: An analyzer of a component in a sample fluid includes an optical source and an optical detector defining a beam path of a beam, wherein the optical source emits the beam and the optical detector measures the beam after partial absorption by the sample fluid, a fluid flow cell disposed on the beam path defining an interrogation region in the a fluid flow cell in which the optical beam interacts with the sample fluid and a reference fluid; and wherein the sample fluid and the reference fluid are in laminar flow, and a scanning system that scans the beam relative to the laminar flow within the fluid flow cell, wherein the scanning system scans the beam relative to both the sample fluid and the reference fluid.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: June 13, 2023
    Assignee: 1087 SYSTEMS, INC.
    Inventor: Matthias Wagner
  • Patent number: 11674169
    Abstract: Provided herein is technology relating to isolating nucleic acids. In particular, the technology relates to methods and kits for extracting nucleic acids from problematic samples such as stool.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: June 13, 2023
    Assignee: Exact Sciences Corporation
    Inventors: Janelle J. Bruinsma, Michael J. Domanico, Graham P. Lidgard, Hongzhi Zou, William G. Weisburg, Hemanth D. Shenoi, James P. Light, II, Keith Kopitzke, John Zeis
  • Patent number: 11673956
    Abstract: The present invention is based, in part, on the discovery of galectin 1 (Gal1) epitopes against which anti-Gal1 agents can neutralize Gal1 function, as well as anti-Gal1 agents and methods useful for neutralizing Gal1 function.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: June 13, 2023
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Margaret A. Shipp, Jing Ouyang, Scott J. Rodig
  • Patent number: 11674128
    Abstract: The presently claimed invention offers programmable and precise regulation of Cas9 functions by utilizing a set of compact Cas9 derivatives created by deleting conserved HNH and/or REC-C domains based on the structural information across variant class 2 CRISPR effectors. In addition, a novel strategy for engineering the dimeric gRNA-guided nuclease by splitting the mini-dSaCas9 and fusing the FokI domain right after the split point is claimed to increase the on-target DNA cleavage efficiency and potentially reduce the off-target effect because of a closer proximity of dimeric Fold nuclease to the target sequence. By combining the optimized and compact gRNA expression cassette and the downsized SaCas9 derivatives, the entire CRISPR/Cas system with different effector domains for transactivation, DNA cleavage and base editing is loaded into a single AAV virus. Such an all-in-one AAV-CRISPR/Cas9 system will be particularly appealing in biomedical applications that require safe and efficient delivery in vivo.
    Type: Grant
    Filed: June 11, 2017
    Date of Patent: June 13, 2023
    Inventors: Zhen Xie, Dacheng Ma
  • Patent number: 11674174
    Abstract: This disclosure provides chips, systems and methods for sequencing a nucleic acid sample. Tagged nucleotides are provided into a reaction chamber comprising a nanopore in a membrane. An individual tagged nucleotide of the tagged nucleotides can contain a tag coupled to a nucleotide, which tag is detectable with the aid of the nanopore. Next, an individual tagged nucleotide of the tagged nucleotides can be incorporated into a growing strand complementary to a single stranded nucleic acid molecule derived from the nucleic acid sample. With the aid of the nanopore, a tag associated with the individual tagged nucleotide can be detected upon incorporation of the individual tagged nucleotide. The tag can be detected with the aid of the nanopore when the tag is released from the nucleotide.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: June 13, 2023
    Assignees: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, ROCHE SEQUENCING SOLUTIONS, INC.
    Inventors: Sergey Kalachikov, Jingyue Ju, Irina Morozova, Michael Dorwart
  • Patent number: 11674177
    Abstract: The present disclosure provides methods of treating subjects having hearing loss, methods of identifying subjects having an increased risk of developing hearing loss, and methods of detecting Kelch Domain Containing 7B (KLHDC7B) variant nucleic acid molecules and variant polypeptides.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: June 13, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Kavita Praveen, Giovanni Coppola, Manuel Allen Revez Ferreira, Lauren Gurski, Aris Baras, Meghan Drummond Samuelson, Goncalo Abecasis
  • Patent number: 11674171
    Abstract: Provided herein are reagents and kits for detection of multiple target sequences in a single-tube, single-color assay, and methods of use thereof. In particular, multiplex assays are provided for the detection of Mycobacterium tuberculosis complex target sequences (e.g., katG, rpoB, inhA promotor, pncA, etc.).
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: June 13, 2023
    Assignee: Brandeis University
    Inventors: Lawrence J. Wangh, Kenneth E. Pierce, John E. Rice
  • Patent number: 11668711
    Abstract: A diagnostic assay strip includes a first layer that includes an iron mobile labelled specific binding partner that will bind to and iron biomarker from a sample and produce an iron complex and a vitamin A mobile labelled specific binding partner that will bind to a vitamin A biomarker from the sample and produce a vitamin A complex. A second layer includes iron and vitamin A test regions, and a control region. The iron test region has immobilized specific binding partners that will bind to the iron complex. The vitamin A test region has immobilized vitamin A biomarker that will bind to vitamin A mobile labelled specific binding partner, which is not bound to the vitamin A biomarker, passing from the first layer to the second layer. The control region has a moiety which will non-specifically bind to and immobilize the iron and vitamin A labelled specific binding partners. Methods of using the diagnostic assay strip are also discussed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: June 6, 2023
    Assignee: CORNELL UNIVERISTY
    Inventors: Saurabh Mehta, David Erickson, Zhengda Lu
  • Patent number: 11667971
    Abstract: Probe systems and methods are provided for detecting nucleic acid targets using labeled polynucleotide probes and antiprobes that interact together and with complementary targets. These interactions result in signaling changes that indicate target frequency and provide error-checking functions that facilitate single base discrimination. These probe:antiprobe compositions enable real-time PCR detection, end-point detection and microarray detection of microbial species, drug resistant mutants, and cancer related variants. The probe:antiprobe may be an internal probe between two primers or may be a primer-probe. The probe also may be modified by introducing a base mismatch to increase thermodynamic discrimination of a correct versus incorrect target differing by a single base. Probe systems also are provided for use in methods of increasing target amplification and detecting specific single base variants.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: June 6, 2023
    Inventor: David A. Shafer
  • Patent number: 11667915
    Abstract: The present invention relates to RNAi constructs and their use in gene silencing. RNAi constructs associated with the invention contain a double stranded region connected to a single stranded region of phosphorothioate modified nucleotides.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: June 6, 2023
    Assignee: Phio Pharmaceuticals Corp.
    Inventors: Tod M. Woolf, Joanne Kamens, William Salomon, Anastasia Khvorova
  • Patent number: 11667918
    Abstract: This invention relates to compounds, compositions, and methods useful for reducing AT3 target RNA and protein levels via use of dsRNAs, e.g., Dicer substrate siRNA (DsiRNA) agents.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: June 6, 2023
    Assignee: Dicerna Pharmaceuticals, Inc.
    Inventors: Bob D. Brown, Henryk T. Dudek
  • Patent number: 11666027
    Abstract: A novel maize variety designated PH4DR4 and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety PH4DR4 with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH4DR4 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety PH4DR4 or a locus conversion of PH4DR4 with another maize variety.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: June 6, 2023
    Inventors: Gustavo Marcelo Garcia, Steven Paul King
  • Patent number: 11661600
    Abstract: In certain embodiments, the present invention provides a modified transfer RNA (tRNA) comprising a T-arm, a D-arm, and anticodon-arm and an acceptor arm, wherein the T-arm comprises nucleotides that interact with the elongation factor 1 alpha protein, and methods of use thereof.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: May 30, 2023
    Assignee: UNIVERSITY OF IOWA RESEARCH FOUNDATION
    Inventors: Christopher Ahern, John D. Lueck
  • Patent number: 11661587
    Abstract: Disclosed are luciferase polypeptides with improved light-emitting activity and their encoding nucleic acids. These molecules are useful in a range of assays including luciferase-based gene reporter assays, bioluminescence resonance energy transfer assays, protein complementation assays and other applications in which luciferase enzymes are utilized as detectable and/or quantifiable labels. Also disclosed are methods and compositions for increasing the sensitivity and/or improving the kinetics of luciferase-catalyzed reactions as well as decreasing the impact of undesirable variables.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: May 30, 2023
    Assignee: Promega Corporation
    Inventors: John Michael Daly, Leon Michael Brownrigg, Jim Yu-Hsiang Tiao
  • Patent number: 11655458
    Abstract: Embodiments of the present disclosure provide a target capturing apparatus and a manufacturing method thereof, and a target detecting method. The target capturing apparatus includes a cavity structure, the cavity structure includes: an inlet portion, an outlet portion and a capture region positioned between the inlet portion and the outlet portion, and the capture region includes a capture component, and a combination specifically combined with a to-be-captured target is included in the capture component so as to capture the target in a sample entering the cavity structure.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 23, 2023
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Defeng Mao
  • Patent number: 11655473
    Abstract: Oligonucleotides are provided herein that inhibit MARC1 expression. Also provided are compositions including the same and uses thereof, particularly uses relating to treating diseases, disorders and/or conditions associated with MARC1 expression.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: May 23, 2023
    Assignees: Novo Nordisk A/S, Dicerna Pharmaceuticals, Inc.
    Inventors: Henryk Dudek, Wen Han, Natalie Wayne Pursell, Chengjung Lai, William Geoffrey Haynes, Zhihao Ding
  • Patent number: 11649457
    Abstract: The present disclosure provides small hairpin nucleic acid molecules capable of stimulating interferon production. The nucleic acid molecules of the present disclosure has a double-stranded section of less than 19 base pairs and at least one blunt end. In certain embodiments, the molecule comprises at least one 5?-triphosphate and/or at least one 5?-diphosphate. In certain embodiments, compounds and/or compositions of the disclosure are useful for treating, ameliorating, and/or preventing SARS-CoV-2 viral infection, and/or ameliorating, minimizing, reversing, and/or preventing persistent SARS-CoV-2 viral infection, and/or minimizing or preventing SARS-CoV-2 viral infection-derived mortality and/or lethality, in a subject. In certain embodiments, compounds and/or compositions of the disclosure are useful for treating, ameliorating, and/or preventing SARS-CoV-2 viral infection in a tumor-bearing subject.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: May 16, 2023
    Assignee: Yale University
    Inventors: Anna Marie Pyle, Akiko Iwasaki, Tianyang Mao
  • Patent number: 11644451
    Abstract: Described herein is a chemical sensing system that can be deployed in an environment and automatically monitor the environment. The chemical sensing system includes one or more chemical sensing units with sensing elements that sense chemicals in the environment. The chemical sensing system analyzes measured values output by the sensing elements to identify patterns indicative of events. After identifying an event, the chemical sensing system may generate an inference about the environment using measured values output by the sensing elements during the event.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: May 9, 2023
    Assignee: Stratuscent, Inc.
    Inventors: Amir Bahador Gahroosi, Neven Maric, Ashok Prabhu Masilamani, Mojtaba Khomami Abadi
  • Patent number: 11643670
    Abstract: Described herein are methods of enhancing chromosomal homologous recombination to stimulate a loss of heterozygosity at a gene locus of interest in a living cell. These methods are driven by an enhancer component and a target-specific endonuclease component and proceed through a mechanism whereby: exogenous donor DNA that is homologous to the gene locus of interest is not introduced into the living cell; the desired allele of the gene locus of interest remains uncleaved; and the undesired allele is either uncleaved, cleaved at a single location, or cleaved at multiple locations. These methods have numerous applications, including the repair of risk alleles for disease prevention, the correction of heterozygous mutations in dividing cells, the design of cancer therapeutics, and the design of novel gene-drive strategies.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: May 9, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Guoping Feng, Jonathan Wilde, Tomomi Aida, Martin Wienisch, Qiangge Zhang
  • Patent number: 11642362
    Abstract: The disclosure provides a method of inhibiting proliferation of a cell, inhibiting m3C formation in a cell, inhibiting activity of Mettl8 in a cell, or activating ATM and p53 in a cell, the method comprising contacting the cell with a Mettl8 inhibitor. The disclosure also provides a composition comprising a cell with a reduced expression or activity of Mettl8. In another aspect, the disclosure provides methods of rendering a tumor cell sensitive to a cancer therapy.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: May 9, 2023
    Assignee: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Xin-Yuan Fu, Xinyu Liu, Lu Ang Xu
  • Patent number: 11644455
    Abstract: Disclosed herein are methods for the detection of the presence of sperm DNA fragmentation in a semen sample. The methods include embedding of sperm cells of the semen sample in a gel, denaturing DNA of the sperm cells, and lysing the nuclear proteins of the sperm cells. The present method includes an ionic surfactant sodium dodycyl sulfate (SDS) and a chaotropic agent urea in the lysis solution for releasing DNA from protamine of chromosome, which significantly reduces the time required for lysis. A kit for detecting sperm DNA fragmentation in a semen sample is also disclosed.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: May 9, 2023
    Assignee: Bonraybio Co., Ltd.
    Inventors: Cheng-Teng Hsu, Li-Sheng Chang, Hsiu-Chin Lee
  • Patent number: 11640849
    Abstract: The present disclosure provides a diagnostic method based on pairwise comparison of cancers using transcriptome expression data. In one embodiment, the method comprises the steps of: obtaining a first gene expression profile of a first cancer sample having a first cancer type; obtaining a second gene expression profile of a second cancer sample having a second cancer type, wherein the second cancer type is different from the first cancer type; comparing said first gene expression profile with said second gene expression profile; and selecting N genes that are most differentially expressed in the first and the second gene expression profiles to generate pairwise differentially expressed genes (DEGs), wherein N is an integer between 10 and 100.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 2, 2023
    Assignee: CROWN BIOSCIENCE, INC. (TAICANG)
    Inventors: Sheng Guo, Henry Qixiang Li
  • Patent number: 11633732
    Abstract: Provided herein is a lateral flow diagnostic device and methods of using thereof. The device comprises a substrate and a first end, wherein the first end comprises a sample loading portion. The first end may further comprise a first region loaded with a detectable ligand, a CRISPR effector system, a detection construct, a first test band comprising a biotin ligand, and a second test band comprising a capture molecule for the detectable ligand. The detection construct may comprise an RNA oligonucleotide, having a first molecule such as FITC on a first end and a second molecule such as FAM on a second end. Contacting the sample loading portion with a sample causes the sample to flow from the sample loading portion of the substrate towards the first and second capture regions, thereby generating a detectable signal, which may be indicative of a disease state.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: April 25, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Feng Zhang, Jonathan Gootenberg, Omar Abudayyeh
  • Patent number: 11634742
    Abstract: Provided herein are double strand DNA molecules comprising inverted repeats, expression cassette and one or more restriction sites for nicking endonucleases, the methods of use thereof, and the methods of making therefor.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: April 25, 2023
    Assignee: Anjarium Biosciences AG
    Inventors: Joel de Beer, Monique Maurer, Nicolas Meier, Lavaniya Kunalingam, Marcello Clerici
  • Patent number: 11629366
    Abstract: There is a method for selective translation of a desired protein. The method has the steps of (a) providing a modified nucleic acid enzyme, including two half cores of a minimized 9DB1 deoxyribozyme split between nucleotides 35 and 39, wherein each half core includes a pendant assembly arm of a strand of nucleic acids extending therefrom and a separate, pendant binding arm extending therefrom of a strand of nucleic acids; (b) binding a nucleic acid ligand to each of the two assembly arms to form an intermediate; (c) binding the intermediate to (i) a first substrate of ribonucleic acid sequences capped at one end, (ii) a second substrate of a strand of ribonucleic acids having a 5? triphosphate region at one end and a region of polyadenylated nucleotides at the other end and wherein the second substrate codes for the desired protein, (iii) join the two half cores to form a core in order to form a ligated product; and (d) allowing the translation for the desired protein to proceed from the ligated product.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 18, 2023
    Inventor: Collin Frank Marino
  • Patent number: 11630066
    Abstract: Optical device for optical fluorescence microscopy, comprising a spatial modulator (1), a microscope objective (2), a beamsplitter (3) and a camera (4), wherein the beamsplitter (3) is placed between the spatial modulator (1) and the microscope objective (2), wherein the beamsplitter (3) is placed between the camera (4) and the microscope objective (2), and wherein a prism (5) is placed between the beamsplitter (3) and the camera (4).
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: April 18, 2023
    Assignees: ALVEOLE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE—CNRS, UNIVERSITÉ DE BORDEAUX
    Inventors: Vincent Studer, Rémi Galland
  • Patent number: 11629348
    Abstract: The present disclosure provides oligomeric compounds (including oligomeric compounds that are antisense agents or portions thereof) comprising a modified oligonucleotide having at least one modified internucleoside linking group.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: April 18, 2023
    Assignee: Ionis Pharmaceuticals, Inc.
    Inventors: Brooke A. Anderson, Xue-hai Liang, William John Drury, III, Michael Oestergaard, Michael T. Migawa, Punit P. Seth
  • Patent number: 11622972
    Abstract: Provided herein are compositions and methods of reducing adduct formation.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 11, 2023
    Assignee: MODERNATX, INC.
    Inventors: Meredith Packer, Dipendra Gyawali, Serenus Hua, Gabor Butora, Gregory John Mercer
  • Patent number: 11624083
    Abstract: The present invention is a method for measuring the amount of at least one molecule in a biological sample, the method comprising a) combining the sample, or a derivative thereof, with one or more aptamers and allowing one or more molecules in the sample to bind to the aptamer(s); b) separating bound from unbound molecules; and c) quantifying the molecule(s) bound to the or each aptamer, wherein quantification of the bound molecule(s) is carried out by sequencing at least part of the or each aptamer. Uses of and products derived from the method are also contemplated.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 11, 2023
    Assignee: Caris Science, Inc.
    Inventors: Clive Gavin Brown, Koen Kas, Sven Agnes Jan Eyckerman
  • Patent number: 11618029
    Abstract: The present invention provides a system for receiving biological sequence information and activating the synthesis of a biological entity. The system has a receiving unit for receiving a signal encoding biological sequence information transmitted from a transmitting unit. The transmitting unit can be present at a remote location from the receiving unit. The system also has an assembly unit connected to the receiving unit, and the assembly unit assembles the biological entity according to the biological sequence information. Thus, according to the present invention biological sequence information can be digitally transmitted to a remote location and the information converted into a biological entity, for example a protein useful as a vaccine, immediately upon being received by the receiving unit and without further human intervention after preparing the system for receipt of the information.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 4, 2023
    Assignee: Telesis Bio Inc.
    Inventors: J. Craig Venter, Daniel Gibson, John E. Gill
  • Patent number: 11612873
    Abstract: Nucleic acid memory strands encoding digital data using a sequence of homopolymer tracts of repeated nucleotides provides a cheaper and faster alternative to conventional digital DNA storage techniques. The use of homopolymer tracts allows for lower fidelity, high throughput sequencing techniques such as nanopore sequencing to read data encoded in the memory strands. Specialized synthesis techniques allow for synthesis of long memory strands capable of encoding large volumes of data despite the reduced data density afforded by homopolymer tracts as compared to conventional single nucleotide sequences.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: March 28, 2023
    Assignee: Molecular Assemblies, Inc.
    Inventors: J. William Efcavitch, Sanjay Agarwalla, Kim Albizati, Alan W. Grubbs, Matthew T. Holden, Patrycja A. Hopkins, Jay K. Singh
  • Patent number: 11603556
    Abstract: Methods and compositions for attaching cell-specific barcodes without formation of partitions is provided.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: March 14, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: Ronald Lebofsky