Olefin Patents (Class 562/544)
  • Patent number: 11814350
    Abstract: The present disclosure provides improved methods of performing ozonolysis on alkenes comprising non-reductive quenching of ozonide intermediates using Bronsted bases to yield aldehyde, ketone and/or carboxylic acid products.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: November 14, 2023
    Assignee: P2 SCIENCE, INC.
    Inventors: Alexander Kendall, Yonghua Yang, Patrick Foley
  • Patent number: 9079840
    Abstract: A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide of stoichiometry [Bi1WbOx]a[Mo12Z1cZ2dFeeZ3fZ4gZ5hOy]1, in which a finely divided oxide Bi1WbOx with the particle size d50A1 and, formed from element sources, a finely divided intimate mixture of stoichiometry Mo12Z1cZ2dFeeZ3fZ4gZ5h with the particle size d90A2 are mixed in a ratio of a:1, this mixture is used to form shaped bodies and these are treated thermally, where (d50A1)0.7·(d90A2)1.5·(a)?1?820. A shaped catalyst body obtained by the process. A catalyst obtained by grinding the shaped catalyst body. A process for heterogeneously catalyzing the partial gas phase oxidation of an alkane, alkanol, alkanal and/or an alkenal of 3 to 6 carbon atoms using the catalyst.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: July 14, 2015
    Assignee: BASF SE
    Inventors: Andreas Raichle, Catharina Horstmann, Frank Rosowski, Klaus Joachim Mueller-Engel, Holger Borchert, Gerhard Cox, Ulrich Cremer
  • Patent number: 8829235
    Abstract: The invention relates to a process for preparation of methacrylic acid, comprising the steps: a) providing a feed composition comprising a main compound selected from isobutylene and tert-butyl alcohol and at least one co-compound selected from the group consisting of methanol, dimethyl ether and formaldehyde; b) subjecting the feed composition provided in step a) with at least a first part of said at least one co-compound to a catalytic reaction zone and obtaining an oxidation phase comprising methyl methacrylate and methacrylic acid.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: September 9, 2014
    Assignee: Evonk Röhm GmbH
    Inventor: Torsten Balduf
  • Patent number: 8716525
    Abstract: The present invention relates to a method and apparatus for continuous recovery of (meth)acrylic acid, and more specifically to a method of continuous recovery of (meth)acrylic acid, including: conducting gas phase oxidation of at least one compound selected from the group consisting of propane, propylene, butane, i-butylene, t-butylene, and (meth)acrolein in the presence of a catalyst to obtain a mixed gas containing (meth)acrylic acid; quenching the (meth)acrylic acid-containing mixed gas to remove high boiling point by-products in the (meth)acrylic acid-containing mixed gas; contacting the high boiling point by-product-free (meth)acrylic acid-containing mixed gas with water or an aqueous solution to obtain an aqueous solution containing (meth)acrylic acid; and purifying the aqueous solution containing (meth)acrylic acid to obtain (meth)acrylic acid.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 6, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Se-Won Baek, Hyun-Kyu Kim, Dong-Hyun Cho, Jun-Seok Ko
  • Publication number: 20130190528
    Abstract: A one-pot method for the oxidative cleavage of unsaturated carbon-carbon bonds to provide a carboxylic acid or a ketone-containing compound is disclosed. The method comprises contacting an alkene or an alkyne with hydrogen peroxide and a manganese transition metal catalyst having a ligand of formula (I): wherein: and p is 3.
    Type: Application
    Filed: July 21, 2011
    Publication date: July 25, 2013
    Applicant: CATEXEL LIMITED
    Inventors: Ronald Hage, Johannes Wietse De Boer, Pattama Saisaha
  • Patent number: 8273313
    Abstract: A system and process for separating methacrolein (MA) from methacrylic acid (MAA) and acetic acid in the gas phase product from partial oxidation of isobutylene (IB) in two oxidation steps is disclosed. The process and system maximize recovery of all three components at minimum capital and energy cost, under conditions that minimize polymerization conditions and plugging by solids deposition in compressors, columns, etc.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 25, 2012
    Assignee: Saudi Basic Industries Corporation
    Inventor: Frederick Merrill Galloway
  • Patent number: 7910772
    Abstract: A catalyst for the oxidation of an alkane, alkene or mixtures thereof. The catalyst includes a mixed-metal oxide having the formula MoaVbNbcTedSbeOf wherein, when a=1, b=0.01 to 1.0, c=0.01 to 1.0, d=0.01 to 1.0, e=0.01 to 1.0, and f is dependent upon the oxidation state of the other elements, the catalyst further characterized by having at least two crystal phases, the first crystal phase being an orthorhombic M1 phase and the second crystal phase being a pseudo-hexagonal M2 phase, the orthorhombic M1 phase present in an amount between greater than 60 weight percent to less than 90 weight percent. The catalysts disclosed herein exhibit a chemisorption of NH3 of less than about 0.2 mmole per gram of metal oxide.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: March 22, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, James C. Vartuli, Wilfried Jozef Mortier, Jihad Mohammed Dakka, Robert C. Lemon
  • Patent number: 7868202
    Abstract: The object of the invention is to provide a method for producing (meth)acrolein or (meth)acrylic acid by gas phase catalytic oxidation reaction, which can perform smooth temperature control of the heat medium, can prevent hot spot effectively and can be handled easily, and an apparatus. The invention are a method for producing (meth)acrolein or (meth)acrylic acid by carrying out gas phase catalytic oxidation reaction of propane, propylene, isobutylene or (meth)acrolein with an oxygen-containing gas using an inorganic salt as a reaction temperature adjusting heat medium, characterized in that the material of a gland packing member which seals body part of a regulating valve arranged on a heat medium feeder and controlling supply and circulation velocity of the heat medium and a rotation axis that interfits to the body part, in such a manner that they can perform sliding, is a mica-based material, and a production apparatus.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: January 11, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shuhei Yada, Hiroki Kawahara, Yukihiro Hasegawa
  • Patent number: 7825277
    Abstract: A process for the ozonolysis of unsaturated starting materials, which is characterized in that the reaction is carried out in a structured reactor.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 2, 2010
    Assignee: Cognis IP Management GmbH
    Inventors: Bernhard Gutsche, Stefan Franzen, Markus Kloeker
  • Patent number: 7642214
    Abstract: An object of the present invention is to provide a highly active catalyst for producing an unsaturated oxygen-containing compound from an alkane and the catalyst comprising Mo, V, Ti and Sb or Te as the indispensable active components. The preferable catalyst is represented by formula (1) or (2) as shown below, Mo1.0VaTibXcYdOe??(1) Mo1.0VaTibXcYdZfOe??(2) wherein X represents Sb or Te; Y represents Nb, W or Zr; Z represents Li, Na, K, Rb, Cs, Mg, Ca or Sr; a, b, c, d, e and f represent atomic ratios of their respective elements, with 0<a<0.7, 0<b<0.3, 0<c<0.7, 0?d<0.3, 0<f<0.1; e is a number determined by oxidation states of the other elements than oxygen.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: January 5, 2010
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Tomoaki Kobayashi, Yoshimasa Seo
  • Patent number: 7588739
    Abstract: A fixed-bed multitubular reactor, comprising a plurality of reaction tubes (3) filled with a catalyst and catalyst temperature measurers (4) measuring the temperatures of the reaction tubes near the radical center parts thereof. The catalyst temperature measurer (4) is installed in each of a part of the plurality of reaction tubes (3), and the measurement positions thereof are differentiated from each other in the longitudinal direction of the reaction tubes (3).
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: September 15, 2009
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Miezi Sugiyama, Yoshimasa Ando, Yoshiyuki Taniguchi
  • Publication number: 20090186953
    Abstract: A catalytically active oxide mixture as well as a process for the production thereof and the use thereof.
    Type: Application
    Filed: February 5, 2007
    Publication date: July 23, 2009
    Inventors: Ulrich Gesenhues, Bernd Proft, Elke Hirschberg
  • Patent number: 7531690
    Abstract: A catalyst for the production of an oxygen-containing compound, comprising palladium, tungsten and zirconium, a production process thereof, and a production process of an oxygen-containing compound using the catalyst. The catalyst can provide an oxygen-containing compound from a lower olefin and oxygen with high productivity and high selectivity.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: May 12, 2009
    Assignee: Showa Denko K.K.
    Inventor: Toshio Okuhara
  • Publication number: 20090043127
    Abstract: Disclosed are a Mo—Bi—Nb—Te based composite metal oxide; and a process for producing (meth)acrylic acid from at least one reaction material selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, wherein the Mo—Bi—Nb—Te based composite metal oxide is used as a catalyst. Also, disclosed is a process for producing (meth)acrylic acid comprising a first step of producing (meth)acrolein as a main product from at least one reaction material selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, and a second step of producing (meth)acrylic acid from the (meth)acrolein, wherein yield of (meth)acrylic acid in the product of the first step is 20 mole % or higher.
    Type: Application
    Filed: October 16, 2008
    Publication date: February 12, 2009
    Applicant: LG CHEM, LTD.
    Inventors: Hyun Jong SHIN, Byung Yul CHOI, Yeon Shick YOO, Young Hyun CHOE, Young Jin CHO, Duk Ki KIM, Kwang Ho PARK, Joo Yeon PARK
  • Patent number: 7468167
    Abstract: A method for quickly starting up a reactor and a reactor system therefor are provided. A shell-and-tube reactor in the system is adapted to circulate a heat medium having a solid point in the range of 50-250° C. to the outside of the reaction tubes and characterized by initiating temperature elevation of the reactor by introducing a gas of a temperature in the range of 100-400° C. to the reaction tubes' side and then circulating the heat medium in a heated state to the outside of the reaction tubes. By introducing a gas of an elevated temperature preparatorily to the reaction tubes, it is made possible to prevent the heat medium after circulation from being solidified again and enable the reactor to be quickly started up.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 23, 2008
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yukihiro Matsumoto, Takeshi Nishimura, Hideki Sogabe, Kazuhiko Sakamoto, Osamu Dodo
  • Patent number: 7361622
    Abstract: Alkenes, unsaturated saturated carboxylic acids, saturated carboxylic acids and their higher analogues are prepared cumulatively from corresponding alkanes utilizing using a multi-staged catalyst system and a multi-stage process which comprises steam cracking of alkanes to corresponding alkenes at flame temperatures and at short contact times in combination with one or more oxidation catalysts for catalytically converting the corresponding alkenes to further corresponding oxygenated products using short contact time reactor conditions.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: April 22, 2008
    Assignee: Rohm and Haas Company
    Inventors: Abraham Benderly, Anne Mae Gaffney, Mark Anthony Silvano
  • Patent number: 7262322
    Abstract: An oxidation process for the production of alkenes and carboxylic acids from a feed comprising alkene and/or alkane, carbon monoxide, a molecular oxygen containing gas and optionally water in the presence of an oxidation catalyst in which the level of carbon monoxide is maintained between 1% and 20% by volume of the total feed to the reactor.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: August 28, 2007
    Assignee: BP Chemicals Limited
    Inventors: Ewen James Ferguson, Andrew Richard Lucy, Mark Stephen Roberts, Diana Rachel Taylor, Bruce Leo Williams
  • Patent number: 7169776
    Abstract: The present invention relates to a method of preparing an alkylated salicylamide from a protected and activated salicylamide via a dicarboxylated salicylamide intermediate. The present invention also relates to dicarboxylic salicylamide delivery agent compounds for the delivery of active agents. Methods of administration are provided as well.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: January 30, 2007
    Assignee: Emisphere Technologies, Inc.
    Inventors: Joseph N. Bernadino, Doris C. O'Toole, William E. Bay
  • Patent number: 7132092
    Abstract: A metallized mesoporous silicate which is obtained by (i) reacting (a) either a metal peroxide obtained by the reaction of an aqueous hydrogen peroxide solution with at least one metal or metal compound selected from the group consisting of the following 1) to 4) 1) tungsten 2) molybdenum 3) vanadium 4) compounds comprising 4a) any of tungsten, molybdenum, and vanadium and 4b) at least one element selected from Groups 13 to 16 (excluding oxygen) or a solution of the metal peroxide with (b) a silicon compound in the presence of an alkylamine or a quaternary ammonium salt and separating the resultant silicate; and a process for producing the metallized mesoporous silicate. Also provided is a method of organic synthesis with the silicate.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: November 7, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Koji Hagiya
  • Patent number: 7115775
    Abstract: ?,?-ethylenically unsaturated aldehydes and/or carboxylic acids are prepared by means of a two-stage catalytic gas-phase oxidation in which a gas mixture comprising at least an alkane or alkene having from three to six carbon atoms and oxygen is subjected to a catalytic oxidation reaction, in the first stage (1). oxygen is added to the gases produced in the first stage (1) and the resulting mixture is introduced into the second stage (2) in which it is subjected to a further catalytic oxidation reaction. In the process of the present invention, a signal which correlates with the oxygen content of the reaction gases before and/or after the addition of oxygen between the first and second stages (1, 2) is generated and the oxygen addition is regulated as a function of the signal.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: October 3, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Buschulte, Volker Diehl, Bernd Hagen, Volker Huth, Wolfgang Kasten, Peter Schlemmer, Axel Schroth
  • Patent number: 7081549
    Abstract: A process for the production of acetic acid, which process comprises contacting ethane and/or ethylene with a molecular oxygen-containing gas in a fluid bed reactor in the presence of a microspheroidal fluidised particulate solid oxidation catalyst, wherein at least 90% of said catalyst particles are less than 300 microns.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: July 25, 2006
    Assignee: BP Chemicals Limited
    Inventors: John Cook, Brian Ellis, Philip Howard, Michael David Jones, Simon James Kitchen
  • Patent number: 7078563
    Abstract: A process for the oxidation of a C2 to C4 alkane to produce the corresponding alkene and carboxylic acid which process comprises contacting in an oxidation reaction zone, said alkane, molecular oxygen-containing gas, and the corresponding alkene and optionally, water, in the presence of at least one catalyst active for the oxidation of the alkane to the corresponding alkene and carboxylic acid, to produce a product stream comprising alkene, carboxylic acid and water, wherein in said process the molar ratio of alkene to carboxylic acid produced in said oxidation reaction zone is adjusted or maintained at a pre-determined value by controlling the concentrations of the alkene and optional water in said oxidation reaction zone and optionally by also controlling one or more of the pressure, temperature and residence time of the oxidation reaction zone. Such an oxidation process may be used in an integrated process, such as for the manufacture of vinyl acetate or ethyl acetate.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: July 18, 2006
    Assignee: BP Chemicals Limited
    Inventors: Brian Ellis, Andrew Richard Lucy, Mark Stephen Roberts
  • Patent number: 7015355
    Abstract: A method for the selective production of acetic acid from a gas-phase feed of ethane, ethylene, or mixtures thereof and oxygen at elevated temperatures. The gas-phase feed is brought into contact with a catalyst, containing the elements Mo, Pd, X and Y in the gram atom ratios a:b:c: in combination with oxygen according to formula (I): MOaPdbXcYd. The symbols X and Y have the following meanings: X=one or several elements chosen from the group Cr, Mn, Nb, Ta, Ti, V, Te and W; Y=one or several elements chosen from the group B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Au, Fe, Fu, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Nb, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Ti and U: the indices a, b, c, d and x=the gram atom ration for the corresponding elements, where: a=1; b—0.0001 to 0.01; c=0.4 to 1; and d=0.005 to 1, wherein the space-time yield for the above oxidation to yield acetic acid is 470 kg/(hm3) and the selectivity of the oxidative reaction of ethane and/or ethylene to give acetic acid is, in particular, ?70 mol %.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: March 21, 2006
    Assignee: Celanese International Corporation
    Inventors: Sabine Zeyss, Uwe Dingerdissen
  • Patent number: 6998504
    Abstract: A process for the catalytic gas-phase oxidation of propene to acrylic acid, in which the reaction gas starting mixture is oxidized, with a high propene loading, in a first reaction stage, over a first fixed-bed catalyst which is housed in two successive reaction zones A, B, the reaction zone B being kept at a higher temperature than the reaction zone A, and the acrolein-containing product gas mixture of the first reaction stage is then oxidized in a second reaction stage, with a high acrolein loading, over a second fixed-bed catalyst which is housed in two successive reaction zones C, D, the reaction zone D being kept at a higher temperature than the reaction zone C.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: February 14, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Signe Unverricht, Heiko Arnold, Andreas Tenten, Ulrich Hammon, Hans-Peter Neumann, Klaus Harth
  • Patent number: 6958414
    Abstract: Organic compounds are prepared by heterogeneously catalyzed partial gas-phase oxidation of precursor compounds by a process in which a portion of the reaction gas starting mixture is brought from a low initial pressure to a higher final pressure by means of a radial compressor.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: October 25, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Volker Schliephake, Ulrich Hammon, Ernst Lang, Carl-Ludwig Krüger, Jürgen Schröder, Klaus Joachim Müller-Engel
  • Patent number: 6939991
    Abstract: In a process for preparing acrylic acid, an acrylic acid-containing product gas mixture obtained by catalytic gas phase partial oxidation of a C3 precursor of acrylic acid, after direct cooling with a quench liquid, is fractionally condensed in a separating column provided with internals, rising into itself with sidestream takeoff of crude acrylic acid, and the acrylic acid oligomers which form are dissociated and the resulting dissociation gas is subjected to a countercurrent rectification before it is recycled.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: September 6, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Joachim Thiel, Ulrich Hammon, Dieter Baumann, Jörg Heilek, Jürgen Schröder, Klaus Joachim Müller-Engel
  • Patent number: 6825380
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: November 30, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6781013
    Abstract: A process is provided which can effectively inhibit occurrence of hot spots in reaction zones or heat accumulation at the hot spots, in the occasion of producing acrolein and acrylic acid through vapor phase oxidation of propylene in the presence of a catalyst using a fixed bed shell-and-tube reactor, said catalyst having a composition represented by a general formula (1): MoaWbBicFedAeBfCgDhEiOx (wherein A is at least an element selected from Co and Ni; B is at least an element selected from P, Te, As, B, Sb, Sn, Ce, Nb, Pb, Cr, Mn and Zn; C is alkali metal element; D is alkaline earth metal element; E is at least an element selected from Si, Al, Ti and Zr; and O is oxygen; a, b, c, d, e, f, g, h, i and x denote the atomic numbers of Mo, W, Bi, Fe, A, B, C, D, E and O, respectively, and where a is 12, b is 0-5, c is 0.1-10, d is 0.1-10, e is 1-20, fis 0-5, g is 0.001-3, h is 0-3, i is 0-30, and x is a numerical value which is determined depending on the extent of oxidation of each of the elements).
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: August 24, 2004
    Assignee: Nippon Shokubai Co., Ltd.
    Inventor: Michio Tanimoto
  • Publication number: 20040030184
    Abstract: A process for the production of acetic acid, which process comprises contacting ethane and/or ethylene with a molecular oxygen-containing gas in a fluid bed reactor in the presence of a microspheroidal fluidised particulate solid oxidation catalyst, wherein at least 90% of said catalyst particles are less than 300 microns.
    Type: Application
    Filed: March 5, 2001
    Publication date: February 12, 2004
    Inventors: John Cook, Brian Ellis, Philip Howard, Michael David Jones, Simon James Kitchen
  • Patent number: 6646158
    Abstract: A mixed metal oxide Mo—V—Ga—Pd—Nb—X catalytic system, where X is selected from La, Te, and Zn, provides the oxidation of C2-C8 hydrocarbons to corresponding acids with a molecular oxygen-containing gas.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: November 11, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Abdullah Bin Nafisah, Asad Ahmed Khan
  • Publication number: 20030166967
    Abstract: The present invention relates to a process for oxidizing hydrocarbons, in particular branched or unbranched saturated aliphatic hydrocarbons, cycloaliphatic or alkylaromatic hydrocarbons to acidic or polyacidic compounds.
    Type: Application
    Filed: December 2, 2002
    Publication date: September 4, 2003
    Inventor: Eric Fache
  • Publication number: 20030149295
    Abstract: A process for the oxidation of a C2 to C4 alkane to produce the corresponding alkene and carboxylic acid which process comprises contacting in an oxidation reaction zone, said alkane, molecular oxygen-containing gas, and optionally, at least one of the corresponding alkene and water, in the presence of at least two catalysts each active, with different selectivities, for the oxidation of the alkane to the corresponding alkene and carboxylic acid, to produce a product stream comprising said alkene, carboxylic acid and water, and in which process the molar ratio of alkene to carboxylic acid produced in said oxidation reaction zone is adjusted or maintained at a pre-determined value by controlling the relative proportions of the at least two catalysts in said oxidation reaction zone. Such an oxidation process may be used in an integrated process, such as for the manufacture of ethyl acetate or vinyl acetate.
    Type: Application
    Filed: February 21, 2003
    Publication date: August 7, 2003
    Applicant: BP Chemicals Limited
    Inventors: Brian Ellis, Mark Stephen Roberts
  • Publication number: 20030149299
    Abstract: An osmium-assisted process for the oxidative cleavage of oxidizable organic compounds such as unsaturated organic compounds, including alkenes and olefins into aldehydes, carboxylic acids, esters, or ketones. The process uses a metal catalyst comprising osmium and a peroxy compound selected from the group consisting of peroxymonosulfuric acid and salts thereof to oxidatively cleave the oxidizable organic compound. In particular, the process enables aldehydes, carboxylic acids, esters, or ketones to be selectively produced from the corresponding mono-, 1,1-di-, 1,2-di-, tri-, or tetra-substituted olefins in a reaction that produces the result of ozonolysis but with fewer problems. The present invention further provides a process for oxidizing an aldehyde alone or with the osmium in an interactive solvent to produce an ester or carboxylic acid.
    Type: Application
    Filed: January 13, 2003
    Publication date: August 7, 2003
    Applicant: Board of Trustees of MICHIGAN STATE UNIVERSITY
    Inventors: Babak Borhan, Benjamin R. Travis, Jennifer M. Schomaker
  • Publication number: 20030040642
    Abstract: A method for adjusting the concentration of starting materials, comprising adjusting the starting material concentration in a gas fed to a reactor in a gas phase contact reaction process having a recycling system, wherein the concentration of a starting material in a gas in the process is measured, the starting material is fed by setting the feed amount of the starting material newly added to the process based on the measured value, and thereby the starting material concentration in the gas fed to the reactor is controlled; and a method for controlling a reaction process using the above-described adjusting method.
    Type: Application
    Filed: December 18, 2001
    Publication date: February 27, 2003
    Inventors: Hidetoshi Goto, Shigeru Hatanaka
  • Patent number: 6525217
    Abstract: A process for the catalytic gas-phase oxidation of propene to acrylic acid, in which the reaction gas starting mixture is oxidized, with an increased propene loading, in a first reaction stage, over a first fixed-bed catalyst and then the acrolein-containing product gas mixture of the first reaction stage is oxidized, in a second reaction stage, with an increased acrolein loading, over a second fixed-bed catalyst, the catalyst moldings in both reaction stages having an annular geometry.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: February 25, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Signe Unverricht, Heiko Arnold, Andreas Tenten, Ulrich Hammon, Hans-Peter Neumann, Klaus Harth
  • Patent number: 6515172
    Abstract: Process for the preparation of perfluorocarboxylic acids of the formula RF—COOH, salts thereof and esters thereof from perfluoroalkyl iodides of the formula RF′—I, in which RF and RF′ are cyclic, branched or linear, saturated or unsaturated perfluoroalkyl radicals, by activating the perfluoroalkyl iodides in the presence of oxygen and in organic solvents.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: February 4, 2003
    Assignee: Clariant GmbH
    Inventors: Ralf Grottenmüller, Wolfgang Knaup, Anton Probst, Klaus Dullinger
  • Patent number: 6437180
    Abstract: A process for preparing aliphatic C4-18 &agr;,&ohgr;-dicarboxylic acids by oxidation of C6-20 &agr;,&ohgr;-dienes with hydrogen peroxide or compounds which release hydrogen peroxide under the reaction conditions as is characterized in that the reaction is carried out in the presence of a transition metal catalyst of group VI and of a mixture containing at least one organic acid and one aprotic organic solvent. A specific temperature profile is maintained at different phases of the reaction, which increases yield and selectivity.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: August 20, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Michael Schelhaas, Helmut Greiving, Manfred Jautelat
  • Patent number: 6414183
    Abstract: The present invention provides a method for stabilizing waste oil which is taken of each chemical apparatus of the manufacturing line of (meth)acryl acid and/or ester thereof, and treating the waste oil such as draining it out of the production apparatus, for example, a distillation tower from its bottom, sending and transporting it by a pump through a pipeline, and storing it in a storage tank in a simple manner while keeping the waste oil in a stable state. The waste oil can be stabilized by coexisting with solvent. The solvent used in the present invention is typically at least one selected from the group consisting of water, alcohol, ether, carboxylic acid, ketone, aromatic hydrocarbons, and aliphatic hydrocarbons.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: July 2, 2002
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazuhiko Sakamoto, Sei Nakahara, Masatoshi Ueoka
  • Publication number: 20020010365
    Abstract: A process useful for the catalytic gas phase oxidation of alkanes to unsaturated aldehydes or carboxylic acids uses catalysts of particular compositions formed in a particular manner.
    Type: Application
    Filed: January 4, 2001
    Publication date: January 24, 2002
    Inventor: Manhua Lin
  • Publication number: 20020010364
    Abstract: This invention relates to a process for producing one or more organic acids in high purity which process comprises (i) oxidizing in a liquid oxidation reactor one or more organic liquids with essentially pure oxygen or oxygen-enriched air containing at least about 50% oxygen, at a temperature sufficiently stable to prevent cycling of reaction rate, to produce a crude reaction product fluid, and (ii) refining said crude reaction product fluid to give said one or more organic acids in high purity. The oxidation temperature is preferably controlled to within about ±3° C. of a target temperature. The organic acids described herein is useful in a variety of applications, such as intermediates in the manufacture of chemical compounds, pharmaceutical manufacture and the like.
    Type: Application
    Filed: April 21, 1998
    Publication date: January 24, 2002
    Inventors: JOHN BRAITHWAITE, DAVID ROBERT BRYANT, DAVID JAMES MILLER, JOHN EARL LOGSDON
  • Patent number: 6333444
    Abstract: A catalyst composition and its use for the oxidation of ethane to ethylene and/or acetic acid and/or for the oxidation of ethylene to acetic acid which comprises in combination with oxygen the elements molybdenum, vanadium, niobium and gold in the absence of palladium according to the empirical formula: MOaWbAucVdNbeYf (I) wherein Y is one or more elements selected from the group consisting of: Cr, Mn, Ta, Ti, B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re, Te, La and Pd; a, b, c, d, e and f represent the gram atom ratios of the elements such that: 0<a≦1; 0≦b<1 and a+b=1; 10−5<c≦0.02; 0<d<2; 0<e≦1; and 0≦f≦2.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: December 25, 2001
    Assignee: BP Chemicals Limited
    Inventors: Brian Ellis, Michael David Jones
  • Patent number: 6084124
    Abstract: The present invention is a method to produce an unsaturated carboxylic acid which includes the steps of: providing an epoxy compound; contacting the epoxy compound with carbon monoxide in the presence of a catalytically effective amount of a catalyst system comprising tin and cobalt under conditions effective for carbonylation of the epoxy; and recovering a .alpha.-.beta. unsaturated carboxylic acid product. The preferred epoxy is ethylene oxide which is reacted to acrylic acid by the method of the present invention.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: July 4, 2000
    Assignee: Shell Oil Company
    Inventors: Lynn Henry Slaugh, Thomas Clayton Forschner
  • Patent number: 6084127
    Abstract: An improved method which enables stable and effective recovery of acrylic acid over a prolonged period is provided, said method comprising contacting an acrylic acid-containing gas obtained upon gas-phase catalytic oxidation of propylene and/or acrolein, with water, whereby collecting the acrylic acid in form of an aqueous solution, introducing said aqueous solution into an azeotropic separation column and distilling it in the presence of an azeotropic solvent to isolate and recover the acrylic acid, in which polymerization of the acrylic acid in the azeotropic separation column is prevented. Said method is characterized by using as the azeotropic solvent either a mixed solvent composed of solvent A (eg., ethyl acrylate, methyl methacrylate, etc.) and solvent B (eg., toluene, heptane, etc.) (first embodiment) or the solvent A alone (second embodiment).
    Type: Grant
    Filed: February 26, 1998
    Date of Patent: July 4, 2000
    Assignee: Nippon Shokubai Co Ltd
    Inventors: Kazuhiko Sakamoto, Fumio Shibusawa, Sei Nakahara, Takahiro Takeda, Masatoshi Ueoka
  • Patent number: 5945562
    Abstract: A process of preparing a perfluoroalkylcarboxylic acid by an oxidative decomposition reaction of a perfluoroalkylethylene corresponding to a general formula:Rf--CH.dbd.CH.sub.2?wherein, Rf is a perfluoroalkyl group containing 2 to 14 carbon atoms.!to obtain a perfluoroalkylcarboxylic acid corresponding to a general formula:Rf--COOH?wherein, Rf is the same as the above.!characterized that the reaction is carried out in the presence of an organic solvent which is compatible with water and substantially inert to the above reaction, a ruthenium compound as a catalyst and an aqueous solution of at least one of hypochlorous acid or a salt thereof is provided.
    Type: Grant
    Filed: January 27, 1998
    Date of Patent: August 31, 1999
    Assignee: Daikin Industries Ltd.
    Inventors: Hirokazu Aoyama, Yasumichi Chiba
  • Patent number: 5736012
    Abstract: A process for the preparation of a fluorinated acid such as trifluoroacetic acid, including admixing an hydrofluorocarbon, such as 1,1,1-trifluoroethane, with chlorine, an oxidizing agent and an additive to prevent or minimize decomposition; and irradiating the reaction mixture with a light source having a wavelength ranging from 2000 .ANG. to 14000 .ANG..
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: April 7, 1998
    Assignee: AlliedSignal Inc.
    Inventors: Alagappan Thenappan, Michael Van Der Puy
  • Patent number: 5731460
    Abstract: A catalyst system and process for the oxidative cleavage of alkenes with hydrogen peroxide is provided. The catalyst system comprises a source of ruthenium, a source of molybdenum and a phase transfer agent. The process comprises contacting an alkene with the hydrogen peroxide in the presence of the above catalyst system. Sources of ruthenium and molybdenum comprise the metals, salts or complexes. Preferred sources are RuCl.sub.3 and MoO.sub.3. The phase transfer agent is preferably a quaternary ammonium salt. The process usually takes place in the presence of an organic solvent, preferably t-butanol.
    Type: Grant
    Filed: February 14, 1996
    Date of Patent: March 24, 1998
    Assignee: Solvay Interox Limited
    Inventors: Alexander Johnstone, Paul John Middleton, Miranda Service, William Ronald Sanderson
  • Patent number: 5646305
    Abstract: This invention is directed towards an improved process for the selective gas phase oxidation of a organic reactant using a metal oxide redox catalyst, wherein the organic reactant and air feeds are at a substantially continuous level, the improvement comprising adding a fluctuating flow of oxygen at alternating relatively high and relatively low levels. The invention also teaches means by which a gas may be provided to a reaction process on a fluctuating basis.
    Type: Grant
    Filed: December 27, 1995
    Date of Patent: July 8, 1997
    Assignee: Praxair Technology, Inc.
    Inventors: Matthew Lincoln Wagner, Donald Walter Welsh Kirkwood, Kazuo Kiyonaga
  • Patent number: 5591893
    Abstract: The invention relates to a process for the preparation of polycarboxylic acids and derivatives thereof, the polycarboxylic acids prepared containing at least three carboxyl groups, comprising the steps(A) introducing one or more organic compounds, which contain nonaromatic carbon-carbon (C--C) double bonds, into water,(B) ozonolysis of the organic compounds in water by passing in an ozone-containing carrier gas,(C) addition of an aqueous hydrogen peroxide solution, to oxidatively work up the ozonolysis products produced in step (B), which comprises, in step (A), introducing the organic compound(s) into water having a pH of 7 or less than 7 and, in step (C), adding hydrogen peroxide in water without adding an organic solvent.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: January 7, 1997
    Assignee: Hoechst AG
    Inventors: J urgen Kulpe, Heinz Strutz
  • Patent number: 5420316
    Abstract: A carboxylic acid is made by contacting an organic compound having at least one olefinic bond with ozone to form a mixture of ozonization products; contacting the mixture of ozonization products with oxygen to form a mixture of oxidation products; contacting the mixture of oxidation products with oxygen in the presence of an effective amount of a catalyst selected from the group consisting of a manganese-exchanged X-zeolite, a manganese-exchanged Y-zeolite, a manganese-exchanged A-zeolite, or a combination thereof to form said carboxylic acid.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: May 30, 1995
    Assignee: Henkel Corporation
    Inventor: Louis Rebrovic
  • Patent number: RE44206
    Abstract: An oxidation process for the production of alkenes and carboxylic acids from a feed comprising alkene and/or alkane, carbon monoxide, a molecular oxygen containing gas and optionally water in the presence of an oxidation catalyst in which the level of carbon monoxide is maintained between 1% and 20% by volume of the total feed to the reactor.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: May 7, 2013
    Assignee: BP Chemicals Limited
    Inventors: Ewen James Ferguson, Andrew Richard Lucy, Mark Stephen Roberts, Diana Rachel Taylor, Bruce Leo Williams