Measuring Resistance Of Capillary Blood Vessels To Hemorrhage Patents (Class 600/482)
  • Patent number: 11854697
    Abstract: A system is provided including an implantable device configured to be implanted subcutaneously within a patient, a clinician monitoring and control device, an optional patient mobile device, a remote server and/or at least one data analyst device used by a data analyst. The implantable device may communicate with any or all of the monitoring and control device, the mobile device and/or the remote server through the charging device or by establishing a direct wireless connection with each such device. The data analyst device may establish a direct connection with the remote server and also may establish a connection with the monitoring and control device and the mobile device. By analyzing and reviewing the data generated by the implantable device, the data analyst may diagnose a medical condition or indicate a heightened risk of a condition.
    Type: Grant
    Filed: September 7, 2020
    Date of Patent: December 26, 2023
    Assignee: Sequana Medical NV
    Inventors: Thomas Werner Degen, Stefan Tschumper
  • Patent number: 8777850
    Abstract: An implantable medical device system and method provide physiological variable monitoring for use in patient management. A target value for a physiological variable and formulations for computing metrics of the physiological variable are stored. Values of the physiological variable are determined from a sensed physiological signal and are used to compute a selected metric. The metric is compared to the stored target value.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: July 15, 2014
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Ven R. Manda, Brandon S. Sparks, Tommy D. Bennett
  • Patent number: 8777863
    Abstract: Methods, systems, and apparatus for powering and/or recharging medical devices implanted within the body are described. An illustrative power generation module disposable within the interior space of an implantable medical device includes a module body that defines an interior cavity as well as a flexible diaphragm that spans the interior cavity. The flexible diaphragm includes a first electrical conductor, a piezoelectric layer disposed adjacent to the first electrical conductor, and a second electrical conductor disposed adjacent to the piezoelectric layer. The piezoelectric layer is configured to displace within the interior cavity and generate a voltage differential between the first electrical conductor and the second electrical conductor.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: July 15, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Thomas W. Piaget, Bin Mi, Lance E. Juffer, Keith R. Maile, Abhijeet V. Chavan, Cheng Zhang
  • Patent number: 8728059
    Abstract: The disclosed embodiments relate to a system and method for assuring validity of monitoring parameters in combination with a therapeutic device. An exemplary embodiment of the present technique comprises perturbing a treatment administered to a patient, measuring at least one parameter of the patient reflecting the underlying physiological state and associated with the treatment, and comparing the perturbations of the treatment to measurements of the at least one parameter to determine if the perturbations to the treatment are reflected by the parameter.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 20, 2014
    Assignee: Covidien LP
    Inventors: Edward Karst, Clark R. Baker, Jr.
  • Patent number: 8517950
    Abstract: An apparatus for determining an indicator parameter relating to a subject comprising at least an input line for receiving electrical signals coming from a electrodes, receiving a signal coming from a peripheral sensor predisposed to operate in a predetermined peripheral section of the subject's body; a control unit connected to the input line and configured for determining a value of an indicator value (iHAT) as a function of the instant of generation (TGj) of a pressoric wave in relation to the heartbeat.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 27, 2013
    Inventor: Marco Vettorello
  • Patent number: 8197416
    Abstract: Apparatus includes at least one of inflatable blood pressure cuffs for encircling a proximal, a distal, and an intermediate portion of a limb. Electrical signals from a pressure transducer on the cuff and from skin contact electrodes on the cuff are generated during pulses from the heart or from externally generated cuff pulses. A signal processing mechanism generates numerical values that are relevant to conditions that may contribute to cardiac malfunction.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: June 12, 2012
    Inventor: Ravi Shankar
  • Publication number: 20120078121
    Abstract: A catheter for placement within a body lumen, the catheter including a flexible conduit that is elongated along a longitudinal axis, the flexible conduit having a proximal end and a distal end, at least one delivery waveguide and at least one collection waveguide extending along the flexible conduit, a lumen-expanding inflatable balloon disposed about a portion of the conduit, a transmission output of the at least one delivery waveguide and a transmission input of the at least one collection waveguide located within the balloon; and, at least one elongate arm connected to the conduit and positioned within the balloon, the at least one elongate arm radially translatable with respect to the conduit, and wherein at least one of the transmission output and transmission input is coupled to the elongate arm.
    Type: Application
    Filed: May 20, 2010
    Publication date: March 29, 2012
    Applicant: CorNova, Inc.
    Inventors: S. Eric Ryan, Jing Tang, Richard Gambale
  • Patent number: 8041419
    Abstract: A medical device system that includes a brain monitoring element, cardiac monitoring element and a processor. The processor is configured to receive a brain signal from the brain monitoring element and a cardiac signal from the cardiac monitoring element. The processor is further configured to compare the brain signal to the cardiac signal. A method of comparing a brain signal to a cardiac signal is also provided.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: October 18, 2011
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves
  • Patent number: 7949392
    Abstract: A medical device system that includes a brain monitoring element, cardiac monitoring element and a processor. The processor is configured to receive a brain signal from the brain monitoring element and a cardiac signal from the cardiac monitoring element. The processor is further configured to compare the brain signal to the cardiac signal. A method of comparing a brain signal to a cardiac signal is also provided.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: May 24, 2011
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves
  • Patent number: 7894900
    Abstract: A device for monitoring cardiac pacing rate having a measuring unit for receiving an electrical signal representing the patient's cardiac demand, and a computing unit for determining the myocardial energy balance by calculating energy consumed by the myocardium for both an external dynamic work for pumping blood into a vascular system, and an internal static work of the myocardium. Volume and time based measurements are used, and in one embodiment, volumes are estimated and volume ratios are calculated from volume estimates. In another embodiment, volumes are estimated from bioimpedance measurements. A further aspect is a rate adaptive pacemaker, wherein the maximum pacing rate is determined from the myocardial energy balance such that the energy supplied to the myocardium approximately equals the energy consumed by the myocardium for both an external dynamic work for pumping blood into a vascular system and an internal static work of the myocardium.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: February 22, 2011
    Assignee: Smartimplant OÜ
    Inventors: Andres Kink, Mart Minn, Toomas Parve, Indrek Rätsep
  • Patent number: 7690378
    Abstract: Methods, systems and devices are provided for monitoring respiratory disorders based on monitored factors of a photoplethysmography (PPG) signal that is representative of peripheral blood volume. The monitored factors can be respiratory effort as well as respiratory rate and/or blood oxygen saturation level. The systems and devices may or may not be implanted in a patient.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: April 6, 2010
    Assignee: Pacesetter, Inc.
    Inventor: Robert G. Turcott
  • Patent number: 7618376
    Abstract: A device is provided for assessing impairment of blood circulation in a patient, such as that in perfusion failure, by measurement of blood flow adjacent a mucosal surface accessible by a mouth or nose and connecting with the gastrointestinal tract or upper respiratory/digestive tract of a patient. The device includes a blood-flow sensor adapted to be positioned adjacent a mucosal surface with a patient's body and measuring blood flow in adjacent tissue and a PCO.sub.2 sensor adapted to be positioned adjacent the mucosal surface and measuring PCO.sub.2. In addition a pH sensor may be used in combination with the blood flow determination. A method of detecting perfusion failure is also disclosed. The method includes utilizing blood-flow measurements in conjunction with a surface perfusion pressure index and/or an optical plethysmography index to more accurately assess perfusion failure. These measurements may also be supplement by taking measurements of pH, sublingual PCO.sub.2, and Sa O.sub.2.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 17, 2009
    Assignee: Vasamed, Inc.
    Inventor: Victor E. Kimball
  • Patent number: 7476204
    Abstract: A system for visually indicating, in real time or post hoc, values of a physical property detected over a period of time along a dimension of an organism to a user on a temporal plot and a profile plot, either individually or concurrently. The detected values may be visually indicated on the temporal plot using any of a variety of techniques, including, but not limited to, a contour technique, a line trace technique or a mesh plot technique. Further, the detected values may be visually indicated on the profile plot using any of a variety of techniques, including, but not limited to a contour technique, a line trace technique or a histogram technique. To provide a finer spatial resolution, values may be interpolated for locations between the locations at which values were detected, and these values may be displayed on the temporal plot and the profile plot.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: January 13, 2009
    Assignee: Pressure Profile Systems, Inc.
    Inventors: Thomas R. Parks, Jae S. Son
  • Patent number: 7037273
    Abstract: An implanted heart monitor includes sensors that measure various aspects of the heart failure patient's heart. A remote heart monitoring system connects the implanted heart monitor to a care provider, such as a physician. The data provided by the implanted heart monitor permits the care provider to obtain valuable data on the heart in order to make health care decisions affecting the heart failure patient's treatment. In many cases, the measurement of core body temperature and other patient data will enable the care provider to alter the patient's treatment to address the patient's condition. The implanted heart monitor can communicate over a wireless communication link with an external monitor. The implanted heart monitor may be implemented as part of a pacing device (i.e., pace maker) or may be a separate unit devoted to monitoring functions. The external monitor communicates with a monitoring station over a communication link.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: May 2, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qingsheng Zhu, Julio Spinelli
  • Publication number: 20040254480
    Abstract: A method for the measurement of post arteriolar pressure in a patient which is determined from information regarding the blood pressure (BP), systemic vascular resistance (R) and cardiac output (CO) by plotting the regression line for the equation BP=R×Q+c where c is the post arteriolar pressure, and determining the value of c from the regression line.
    Type: Application
    Filed: February 25, 2004
    Publication date: December 16, 2004
    Inventors: David Marston Band, Terence Kevin O'Brien, Christopher Bancroft Wolff
  • Publication number: 20020161303
    Abstract: A sphygmomanometer cuff (10A) having an air bag (12) arranged within an outer bag (11), from which a tube (13) attached to the air bag (12) is extended outward, is provided. The outer bag (11) is provided with an opening portion (15) for replacing the air bag, and an anti-rotating member (20) for preventing rotation of the air bag (12) within the outer bag (11) is provided at a tube attaching portion (17) of the air bag (12) or at the vicinity thereof. The tube (13) of the air bag (12) is drawn out of the outer bag (11) through the opening portion (15). This structure allows replacement of the air bag (12) and, in addition, prevents any inconvenience such as winding of the air bag (12) within the outer bag and the like.
    Type: Application
    Filed: December 10, 2001
    Publication date: October 31, 2002
    Inventors: Tameo Ashida, Norihito Yamamoto